Бесплатные рефераты


В мире
Календарь новостей
« Дек.2017»
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
    123
45678910
11121314151617
18192021222324
25262728293031
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Вычисление интеграла

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КУРСОВАЯ РАБОТА

тема:

«Вычисление определённого интеграла

 с помощью метода трапеций

на компьютере»

Выполнил:

 студент ф-та

 ЭОУС-1-12

Зыков И.

Принял:

Зоткин С. П.

Москва 2001

1. Введение:

Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается формула трапеций.

Пусть I=ò f(x)dx, где f(x) – непрерывная функция, которую мы для наглядности будем предполагать положительной. Тогда I представит собой площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x). Выберем какое-нибудь натуральное число n и разложим отрезок [a,b] на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xi разбивают интересующую нас криволинейную трапецию на n полосок. Примем каждую из этих полосок за обыкновенную прямолинейную трапецию (рис. 1, где n=4).

Вычисление интеграла

рис. 1

Тогда площадь первой слева полоски будет приближенно выражаться числом

((f(x0)+f(x1))/2)*(x1-x0)=((y0+y1)/2)*((b-a)/n),

ибо основания трапеции, за которую мы принимаем полоску, равны f(x0)=y0 и f(x1)=y1, а высота её

x1-x0=(b-a)/n.

Аналогично площади дальнейших полосок выразятся числами

(y1+y2)*((b-a)/2*n), (y2+y3)*((b-a)/2*n), , (yn-1+yn)*((b-a)/2*n).

Значит, для нашего интеграла получается формула

I»((b-a)/2*n)*[y0+2*(y1+…+yn-1)+yn].

Пологая для краткости y0+yn=Yкр (крайние), y1+y2+…+yn-1=Yпром (промежуточные), получим

ò ydx » ((b-a)/2* n)*(Yкр+2*Yпром)  
ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 20.08.10 | [ + ]   [ - ]  
Просмотров: 134
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.