Бесплатные рефераты


В мире
Календарь новостей
« Фев.2018
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
   1234
567891011
12131415161718
19202122232425
262728    
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Восстановление гидроцилиндров лесных машин

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Проект восстановления гидроцилиндров лесных машин полимерными материалами

 

Введение

Одно из направлений повышения эффективности производства - его переоснащение современной техникой, внедрение передовых технологических процессов и достижений современной науки.

В лесной промышленности и лесном хозяйстве таким направлением наряду с увеличением единичной мощности выпускаемой техники, повышением ее надежности и эффективности является массовый переход на гидрофицированную технику, позволяющую повысить производительность труда благодаря облегчению управления машинами, сокращению времени рабочего цикла, механизации вспомогательных операций. Широкое внедрение машин с гидроприводом поставило перед механизаторами лесной промышленности и лесного хозяйства задачу обеспечения их качественного технического обслуживания и ремонта, а следовательно, и эффективного использования.

Основными преимуществами гидропривода являются: независимое расположение привода и возможность любого разветвления мощности, простота кинематических схем и создание больших передаточных чисел, легкость реверсирования исполнительного механизма, достаточная скорость выполнения технологических операций, возможность предохранения от перегрузок, стандартизация и унификация деталей и сборочных единиц.

В гидроприводе лесных машин широко применяются гидроцилиндры. Они отличаются сравнительно малыми габаритными размерами и массой на единицу передаваемой мощности, бесступенчатым регулированием скорости, удобством эксплуатации, высоким коэффициентом полезного действия и другими положительными факторами, которые способствуют их распространению. Поэтому выпуск гидроцилиндров приобретает особо важное значение. Однако их изготовление и ремонт при существующей технологии - очень трудоемкий и сложный процесс, требующий больших затрат труда и средств.

Эффективное повышение производительности труда при ремонте цилиндров с использованием существующих технологических процессов практически невозможно. Необходимы качественно новые технологические процессы. К ним прежде всего следует отнести нанесение полимерных покрытий на грубо обработанные внутренние поверхности цилиндров, позволяющие получать высокую точность и чистоту поверхности цилиндров без механической обработки. Вопросам технологии нанесения покрытий на внутренние поверхности гидроцилиндров, надежности их работы посвящен настоящий проект.

1. Обзор номенклатуры гидроцилиндров и способы их восстановления.

1.1. Номенклатура гидроцилиндров лесных машин.

Гидроцилиндры являются простейшими гидродвигателями, выходное звено которых совершает возвратно-поступательное движение, причем выходным (подвижным) звеном может быть как шток или плунжер, так и корпус гидроцилиндра.

Основными параметрами гидроцилиндров являются их внутренний диаметр, диаметр штока, ход поршня и номинальное давление, определяющее его эксплуатационную характеристику и конструкцию, в частности тип применяемых уплотнений, а также требования к качеству обработки и шероховатости внутренней поверхности гидроцилиндра и наружной поверхности штока. Гидроцилиндры бывают одно- и двустороннего действия.

Характерная особенность гидроцилиндра одностороннего действия (рис.1.1., а) заключается в том, что усилие на выходном звене (например, штоке), возникающее при нагнетании в рабочую полость гидроцилиндра жидкости под давлением, может быть направлено только в одну сторону (рабочий ход). В противоположном направлении выходное звено перемещается, вытесняя при этом жидкость из гидроцилиндра, только под влиянием возвратной пружины 6 или другой внешней силы, например, силы тяжести.

Поршневые гидроцилиндры одностороннего действия на лесных машинах применяют обычно в системах управления и для привода некоторых вспомогательных механизмов.

Гидроцилиндры двустороннего действия (рис.1.1., б) в отличие от гидроцилиндров одностороннего действия включают в себя две рабочие полости, поэтому усилие на выходном звене и его перемещение могут быть направлены в обе стороны в завиимости от того, в какую из полостей нагнетается рабочая жид-

кость (противоположная полость при этом соединяется со сливом).Схемы различных вариантов крепления корпуса гидроцилиндра показаны на рис.1.2. Жесткое крепление (рис.1.2., а, б, в) применяют в основном для небольших гидроцилиндров системы управления. В лесных машинах чаще используют шарнирное крепление корпуса гидроцилиндра (рис.1.2., г и д).

Гидроцилиндры рабочего оборудования крепят шарнирно (рис.1.2., д), причем в обоих местах шарнирного крепления - у корпуса и штока - применяют сферические подшипники скольжения типа ШС. Эти подшипники допускают поворот (на небольшой угол) пальца в любой плоскости, обеспечивают свободный монтаж и демонтаж шарнирного соединения и исключают заклинивание его при небольших перекосах из-за неточности изготовления элементов рабочего оборудования.

1.2. Неисправности гидроцилиндров и способы их восстановления.

К основным неисправностям гидроцилиндров можно отнести: нарушение уплотнения поршня, износ поверхности гильзы, срыв резьбы, различные течи через уплотнения, износ гильзы, поршня, штока и др.

У гильзы цилиндра изнашивается внутренняя поверхность, на которой могут быть задиры, глубокие царапины, а также забоины и заусенцы по торцам. Следует отметить, что износ гильзы гидроцилиндра носит бочкообразный характер. Это вызвано тем, что для основных рабочих операций лесных и строительных машин нет необходимости использовать весь возможный ход поршня. Таким образом гильза гидроцилиндра изнашивается в основном в своей центральной части, в то время, как по краям износ имеет минимальные значения.

Отдельные забоины или риски на зеркале цилиндра можно зачищать шкуркой, зернистостью 80 - 120. При значительном износе рабочей поверхности гильзы ее растачивают под ремонтный размер. После расточки зеркало цилиндра подвергается отделочным операциям, т.к. чистота поверхности зеркала должна быть не менее девятого класса. В настоящее время в качестве отделочных операций применяют хонингование, раскатку, притирку, точную расточку, шлифование, полировку и прошивание.

Ремонт штоков можно проводить двумя путями. Первый сводится к обработке штоков по диаметру до ремонтного размера с последующим хромированием, с толщиной слоя не менее 0,021 мм. Второй способ сводится к проточке наружной поверхности на глубину 0,6 - 1 мм, наращиванию металла виброконтактной наплавкой, обработке и хромированию. Погнутые штоки следует править без нагрева, допустимый прогиб, при длине штока до 300 мм, не более 0,15 мм на всей его длине. Резьба на концах штока, в случае ее забоя, прогоняется или заваривается, протачивается и нарезается вновь.

У поршня изнашиваются направляющие поверхности, канавки для поршневых колец и сами кольца.

При большом износе обычно поршни не восстанавливают, а заменяют вновь изготовленными. В настоящее время имеется опыт восстановления поршней наплавкой полиамидной смолой П-6110Л на специальных литьевых формах. Кроме того, разработан метод ремонта поршней с помощью полиамидных чехлов-манжет.

Уплотнительные резиновые кольца заменяются новыми при их износе или потере эластичности.

Собранные гидроцилиндры испытывают на стенде на герметичность и скорость перемещения штока.

1.3. Задачи дипломного проектирования.

Наиболее ответственная операция при ремонте гидроцилиндров заключается в окончательной отделке внутренней поверхности гильзы гидроцилиндра. В разделе 1.2. были приведены отделочные операции, применяемые в настоящее время. Ни один из этих способов не является универсальным. Все они трудоемки, требуют точных станков и высокой квалификации рабочего, что в свою очередь ведет к значительному увеличению стоимости ремонта. Кроме того современные условия эксплуатации при недостатке финансирования служб технического обслуживания приводят к тому, что машины не обслуживаются в установленные сроки и фактически работают на износ. Эти причины ведут к тому, что в деталях возникают запредельные износы, в следствие чего они не могут быть восстановлены обычными способами и их вынуждены утилизировать.

Необходимы качественно новые технологические процессы. К ним прежде всего следует отнести нанесение полимерных покрытий на грубо обработанные внутренние поверхности гидроцилиндров без механической обработки, позволяющие получать высокую точность и необходимую шероховатость поверхности гидроцилиндров без механической обработки. Преимуществом этого способа также является возможность многократного повторения этого процесса без дополнительного снятия слоя металла, т.к. есть возможность выплавить слой изношенного полимера при температурах, немногим более 100о С.

Таким образом задача дипломного проекта состоит в том, чтобы показать перспективность использования данного метода на предприятиях лесопромышленного комплекса.

 

2. Проектирование технологии ремонта гидроцилиндров с использованием полимерных материалов.

2.1. Условия работы и конструктивно-технологические особенности гидроцилиндров.

Гидроцилиндры лесных машин предназначены для эксплуатации при температуре окружающего воздуха от -40 до +50о С на гидравлических маслах (ВМГЗ, МГ-30, И-20 А), предназначенных для гидроприводов при работе на номинальном давлении 16 МПа (160 кгс/см2). Наибольшее кратковременно допустимое давление не должно превышать 20 МПа (200 кгс/см2).

Гидроцилиндр (рис.2.1.) на давление 160 кгс/см2, используемый для рабочего оборудования экскаватора ЭО-3322А, состоит из следующих основных частей: собственно гидроцилиндра (гильзы 19 с приваренной к ней задней крышкой), навинченной на гильзу 19 передней крышки 9 с отверстием под шток, штока 18 с проушиной 2 и поршня 15. В проушине 2, ввинченной в наружный торец штока 18, и в проушине задней крышки гидроцилиндра установлены с помощью пружинных колец сферические подшипники 1 типа ШС.

Рабочая жидкость подается в поршневую и штоковую полости гидроцилиндра соответственно через отверстия Б и А. Герметичное разделение поршневой и штоковой полостей и передача усилия от давления в рабочей полости на шток 18 создается поршнем 15 с манжетами 14 и уплотнительным кольцом 13. Поршень 15 крепят на внутреннем конце штока 18 гайкой 16, фиксируемой шплинтом 17. Перетечки из полости в полость гидроцилиндра предотвращаются по наружной поверхности поршня манжетами 14, по внутренней - кольцом 13. Манжеты 14 удерживаются от осевого перемещения по поршню 15 манжетодержателями 12.

Передняя крышка 9 фиксируется на резьбе гильзы 19 цилиндра контргайкой 10. Запрессованная в крышке 9 втулка 21

служит направляющей для штока 18.

Утечкам из штоковой полости гидроцилиндра препятствуют установленное в проточке крышки 9 уплотнительное коль-цо 8, а также манжета 6 и уплотнительные кольца 4 и 5 во втулке 21. От осевого перемещения при движении штока манжета 6 удерживается манжетодержателем 7. Со стороны наружного торца крышки 9 установлен грязесъемник 3, который удерживается гайкой 22, ввернутой во внутреннюю резьбу крышки.

На штоке рядом с поршнем 15 установлен демпфер 11, смягчающий удар поршня в переднюю крышку в конце его пол

 

ного хода. В конце хода штока налево щель между кромкой 20 крышки 9 и конической поверхностью демпфера 11, через которую рабочая жидкость выжимается поршнем из штоковой полости в отверстие А, уменьшается. При этом поршень затормаживается за счет дросселирования масла через уменьшающуюся щель.

2.4. Расчет режимов для операционной карты ремонта

Цилиндр У 4560.092.120.

Стягивание сварного шва задней крышки гидроцилиндра (поз.4).

Используется токарно-винторезный станок 16Б16КА, резец 2102-0005-ВК8-1 ГОСТ 18877-73.

Рассчитываем глубину резания:

 

Восстановление гидроцилиндров лесных машин, (2.1.)

 

где: D - диаметр обрабатываемой поверхности;

d - диаметр обработанной поверхности.

 

Восстановление гидроцилиндров лесных машин мм.

 

Учитывая возможности оборудования и инструмента, снимаем припуск за один проход.

Подачу назначаем как долю от глубины резания.

Для черновой обработки:

S = 0,20 . t = 0,2 . 4 = 0,8 мм/об.

При диаметре заготовки 184 мм, и учитывая стойкость инструмента, принимаем частоту вращения n = 100 об/мин.

Рассчитываем фактическую скорость резания:

 

Восстановление гидроцилиндров лесных машин (2.2.)

 

Восстановление гидроцилиндров лесных машин м/мин.

 

Определяем основное время:

 

Восстановление гидроцилиндров лесных машин, (2.3.)

 

где: Lp - длина хода резца;

i - число проходов.

 

Восстановление гидроцилиндров лесных машин мин.

 

Вспомогательное время: Тв = 1,8 мин.

Черновое растачивание цилиндра (поз.1, 3).

Используется горизонтально-расточной станок 2620В, резец Т5К10 ГОСТ 18062-72.

Рассчитываем глубину резания:

 

Восстановление гидроцилиндров лесных машин мм.

Подача для черновой обработки:

S = 0,2 . 2 = 0,4 мм/об.

Частоту вращения назначаем n = 380 об/мин.

Рассчитываем скорость резания:

 

Восстановление гидроцилиндров лесных машин м/мин.

Основное время:

 

Восстановление гидроцилиндров лесных машин мин.

 

Тв = 1,8 мин.

Заливка полимерного материала в щелевой зазор.

Используется приспособление для заливки полимерного материала собственного изготовления.

А) Обезжиривание внутренней поверхности цилиндра.

Обезжиривание.

Ванна со щелочным раствором .Состав раствора: 50 г соды на 1 л воды. То = 2 мин, Тв = 0,5 мин.

Промывка.

Ванна с водой. То = 1 мин, Тв = 0,5 мин.

Сушка.

Устройство для подачи горячего воздуха (технический фен). То = 3 мин, Тв = 0,5 мин, t = 40o C.

Б) Установка цилиндра на основание приспособления и сборка оснастки.

То = 4 мин, Тв = 1 мин.

В) Нагрев цилиндра в сборе с оснасткой в термошкафе.

То = 18 мин, Тв = 2 мин, t = 50o C.

Г) Нанесение разделительного слоя на формующий стержень.

Дисульфид молибдена (МоS2) в порошке нанести на поверхность формующего стержня при помощи ветоши, пропитанной пастой КПД ТУ 6-02-833-74.

То = 1 мин, Тв = 1 мин.

Д) Приготовление полимерной композиции в стеклянной таре.

Рассчитываем количество композиции на одну гильзу.

Восстановление гидроцилиндров лесных машин, (2.4.)

 

где: D - диаметр гильзы после расточки, равен 144 мм;

d - диаметр гильзы номинальный, равен 140 мм;

k - коэффициент потерь, равен 1,2;

g - удельный вес композиции, равен 1,2 г/см3

 

Восстановление гидроцилиндров лесных машин кг.

 

Состав композиции: ЭД-2 - 0,915 кг, пластификатор МГФ-9 - 0,138 кг, графит (ГОСТ 5279-61) - 0,138 кг, отвердитель-полиэтиленполиамин (ПЭПА) - 0,109 кг.

То = 18 мин, Тв = 2 мин.

Е) Заливка полимерной композиции.

То = 9 мин, Тв = 1 мин.

Ж) Нагрев цилиндра в сборе с оснасткой в термошкафе.

То = 18 мин, Тв = 2 мин, t = 80o C.

З) Охлаждение на воздухе.

То = 40 мин, Тв = 5 мин, t = 10 -20o C.

И) Разборка оснастки.

То = 4 мин, Тв = 0,5 мин.

Шток У 4560.096.230.

1. Шлифование поверхности штока (поз.1, 2).

Требуемый размер Ж 79,81 -0,05. Диаметр шлифуемой детали составляет d = 80 мм.

Выбираем шлифовальный круг ПП 600х100х30524А,

Dк = 600 мм.

Используется кругло-шлифовальный станок 3А164. Длина обрабатываемой детали l = 1140 мм. Частота вращения шлифовального круга nк = 400 об/мин. Частота вращения детали nд = 20 об/мин.

Тогда: Восстановление гидроцилиндров лесных машин м/с.

 

Глубина резания за рабочий ход t = 0,095 мм. Вертикальная подача Sв = t = 0,095 мм/дв.ход. Продольная подача определяется в долях ширины шлифовального круга: S = 0,3 . Вк = 0,3 . 100 = 30 мм/об.заг., припуск Z = t = 0,095 мм.

При круглом шлифовании на проход учитывается величина врезания и пробега инструмента. Она составляет l1 = 0,2 . Вк = 0,2 . 100 = 20 мм.

Таким образом величина рабочего хода L = l + l1 = 1140 + 20 = 1160 мм.

Тогда основное время:

 

Восстановление гидроцилиндров лесных машин, (2.5.)

 

где: k - поправочный коэффициент на “выхаживание”, при чистовом шлифовании составляет 1,3.

 

Восстановление гидроцилиндров лесных машин мин.

 

Тв = 3 мин.

2. Хромирование поверхности штока (поз.1).

Технологический процесс хромирования охватывает группу операций подготовки деталей, операцию нанесения покрытия и обработку покрытых деталей.

Подготовка деталей.

А) Предварительное обезжиривание в ванне со щелочным раствором.

Состав раствора: 50 г соды на 1 л воды. То = 2 мин, Тв = 0,5 мин.

Б) Заделка отверстий и изоляция участков, не подлежащих хромированию.

Установить текстолитовую заглушку в резьбовое отверстие под проушину. Изолировать хвостовик и торцы штока при помощи липкой полиэтиленовой ленты совместно с лаком ХВЛ-21. То = 5 мин, Тв = 2 мин.

В) Монтаж детали на подвеску и изоляция поверхностей подвески, кроме контактных и защитных катодов, при помощи полиэтиленовой ленты совместно с лаком ХВЛ-21.

То = 4 мин, Тв = 1 мин.

Г) Обезжиривание и промывка в воде.

Обезжиривание произвести путем протирки хромируемой поверхности кашицей из венской извести. То = 3 мин, Тв = 2 мин.

Д) Активирование.

Произвести анодное активирование в хромировочном электролите. Плотность тока D=30 А/дм2, t=60оС, То=1мин., Тв=0,5 мин.

Хромирование.

Выбираем блестящее хромовое покрытие.

Прогреть деталь до температуры электролита в хромировочной ванне, t=60оС.

Состав электролита:

Хромовый ангидрид - 190 г/л

Серная кислота - 1 г/л

Кремнефторид натрия - 5 г/л

Бихромат натрия - 30 г/л

Кадмий металлический - 15 г/л

Для выбранного электролита для получения блестящего хромового покрытия режим работы следующий:

Катодная плотность тока Dк=55 А/дм2

Температура электролита t=60оС

Катодный выход по току h=22%

Скорость осаждения хрома составит:

 

P=0,047 Dк Ч h = 0,047x55x22=56,9 мкм/час

 

Рассчитываем необходимую силу тока:

 

I = Dк Ч F (2.6.)

где: F - площадь хромируемой поверхности, дм2

 

F = 2pR Ч L = 2 Ч 3,14 Ч 40 Ч 1140= 286368 мм2 = 28,6 дм2

 

тогда:

 

I = 55 Ч 28,6 = 1573 A

 

Для восстановления детали необходимо наращивание слоя хрома толщиной 0,19 мм., кроме того необходим припуск на последующую механическую обработку, принимаем 0,08 мм.,

 

тогда d=0,27 мм = 270 мкм

 

Продолжительность хромирования составит:

 

Восстановление гидроцилиндров лесных машин (2.7.)

 

Проводим проверочный расчет:

 

Восстановление гидроцилиндров лесных машин (2.8.)

 

где: С - электрохимический эквивалент

g - плотность хрома

тогда:

 

Восстановление гидроцилиндров лесных машин часа = 290 мин.

 

То=290мин., Тв=5 мин.

 

Заключительные операции.

Промыть деталь в горячей воде t=65оС, демонтировать с подвески и снять изоляцию.

То=10мин., Тв=3 мин

 

3. Шлифование штока после хромирования поз. 1.

 

Требуемый размер Ж 80мм. Диаметр шлифуемой детали составляет d = 80,08 мм.

Выбираем шлифовальный круг ПП 600х100х30524А,

Dк = 600 мм.

Используется кругло-шлифовальный станок 3А164. Длина обрабатываемой детали l = 1140 мм. Частота вращения шлифовального круга nк = 400 об/мин. Частота вращения детали nд = 20 об/мин.

Тогда: Восстановление гидроцилиндров лесных машин м/с.

 

Глубина резания за рабочий ход t = 0,04 мм. Вертикальная подача Sв = t = 0,04 мм/дв.ход. Продольная подача определяется в долях ширины шлифовального круга: S = 0,3 . Вк = 0,3 . 100 = 30 мм/об.заг., припуск Z = t = 0,04 мм.

При круглом шлифовании на проход учитывается величина врезания и пробега инструмента. Она составляет l1 = 0,2 . Вк = 0,2 . 100 = 20 мм.

Таким образом величина рабочего хода L = l + l1 = 1140 + 20 = 1160 мм.

Тогда основное время:

 

Восстановление гидроцилиндров лесных машин,

 

где: k - поправочный коэффициент на “выхаживание”, при чистовом шлифовании составляет 1,3.

 

Восстановление гидроцилиндров лесных машин мин.

 

Тв = 3 мин.

3. Стенд для разборки и сборки гидроцилиндров.

3.1. Назначение и область применения стенда.

 

3.3. Устройство и работа стенда.

3.4. Расчет гидропривода механизма вытягивания-установки штока.

3.5. Электрическая схема стенда.

3.6. Расчеты на прочность и работоспособность

Определение диаметра гидравлических трубопроводов.

 

Расчет диаметра пальца

 

Расчет проушины на прочность

 

Расчет диаметра формующего стержня

Определение диаметра формующего стержня при помощи ЭВМ

Расчет толщины стенок формующего стержня

Восстановление гидроцилиндров лесных машин3.7. Разработка технологической оснастки.

4. Исследования эксплуатационных характеристик полимерных покрытий.

4.1. Выбор способа нанесения полимерного покрытия.

В настоящее время известно несколько способов нанесения полимерных покрытий на внутренние цилиндрические поверхности, в частности:

Центробежный.

Нанесение покрытий в “кипящем слое”.

Электростатический метод напыления полимеров.

Футеровка цилиндров путем запрессовки тонкостенных полимерных втулок с последующей механической обработкой.

Газопламенное напыление.

Для изготовления металлопластмассовых цилиндров наиболее пригодны центробежный способ и способ запрессовки полимерных втулок в металлические корпуса с последующей механической обработкой. Однако оба способа имеют существенные недостатки. Так, например, при центробежном способе трудно обеспечить высокую точность внутреннего диаметра цилиндра, низка производительность, высока энергоемкость процесса и др. Запрессовка тонкостенных втулок с последующим растачиванием нерациональна вследствие большой трудоемкости.

В настоящее время наиболее приемлемым способом нанесения полимерного покрытия является способ получения полимерных покрытий путем отверждения полимерных композиций в щелевом зазоре.

Способ нанесения полимерного покрытия на внутренние поверхности цилиндра состоит в заполнении жидкой полимерной композицией (с последующим ее отверждением) щелевого зазора между покрываемой поверхностью, соответственно подготовленной для обеспечения хорошей адгезии покрытия, и поверхностью формующего элемента, имеющей высокую чистоту и обработанной с целью исключения к ней адгезии полимера.

Сущность рассматриваемого способа заключается в следующем (рис.4.1.). Металлический цилиндр 3, подлежащий облицовке пластмассой, устанавливается на основании 4. Концентрично цилиндру здесь же укрепляется центральный формующий стержень 2, имеющий диаметр несколько меньший, чем размер внутреннего диаметра цилиндра. Для создания дополнительного объема пластмассы с целью компенсации усадки на цилиндре имеется накладное кольцо 1. Кольцевой зазор 5 между внутренней поверхностью цилиндра и наружной поверхностью стержня, определяющий толщину слоя покрытия 1-5 мм, заполняется пластмассой. Для ограничений наносимого покрытия по высоте и уплотнения его используется подпрессовочное кольцо 6, которое на некоторой стадии полимеризации пластмассы устанавливается между стержнем и накладным кольцом. Под действием необходимого усилия подпрессовочное кольцо, скользя по стержню, осаживается до уровня цилиндра. При этом избыток массы выдавливается в зазор между наружной поверхностью подпрессовочного кольца и внутренней поверхностью накладного кольца.

После отверждения пластмассы приспособление разбирают. Механическая обработка цилиндра с нанесенным слоем покрытия сводится к снятию фасок.

Применение способа обеспечивает высокую чистоту внутренних поверхностей металлопластмассовых цилиндров, точность размеров внутренних диаметров цилиндров, более высокую производительность и экономичность изготовления металлопластмассовых цилиндров по сравнению с центробежным способом нанесения полимерного покрытия.

4.2. Выбор полимерной композиции.

Для нанесения полимерного покрытия на внутренние поверхности цилиндров способом свободной заливки полимерной композиции в щелевой зазор с последующим отверждением удобны холоднотвердеющие пластмассы.

Исследовались композиции на основе акриловых и эпоксидных смол. К акриловым пластмассам относятся бутакрил и

АСТ-Т. Акриловые пластмассы и пластмассы на основе эпоксидных смол коррозионностойки, имеют удовлетворительные механические характеристики, дают малую усадку, обладают малым влагопоглощением и хорошей адгезией (прилипанием) к металлам.

Для улучшения антифрикционных свойств исследуемых пластмасс использован серебристый графит ГОСТ 5279-61. Применение в качестве наполнителя порошкообразного графита снижает усадку пластмассы, что способствует повышению точности формования. Химическая стойкость покрытия при таком наполнителе также возрастает.

Испытания показали, что для составления графитовых композиций на основе акриловых смол оптимальным количеством графита следует считать 10 мас.ч., а для композиций на основе эпоксидных смол - 15 мас.ч. Такие композиции обладают достаточно высокой адгезией (прилипанием) к поверхности металлов, малой усадкой, высокими прочностными характеристиками, хорошими антифрикционными свойствами.

Экспериментально установлено, что для получения полимерных покрытий наилучшими являются композиции состава (мас.ч.):

а) бутакрил (порошок) - 100, бутакрил (жидкость) - 100, графит ГОСТ 5279-61-10;

б) АСТ-Т (порошок) -85, АСТ-Т (жидкость) - 85, графит ГОСТ 5279-61-10;

 

в) ЭД-20 - 100, пластификатор МГФ-9 - 15, графит (ГОСТ 5279-61) - 15, отвердитель - полиэтиленполиамин (ПЭПА) - 12 -15.

4.3. Точность цилиндров.

Внутренняя поверхность цилиндра, облицованного полимерной композицией, не подвергается механической обработке. Для получения требуемой точности цилиндров необходимо было установить факторы, влияющие на точность формования покрытия.

При нанесении полимерного покрытия на внутреннюю цилиндрическую поверхность формующим элементом служит стержень, устанавливаемый концентрично относительно поверхности. При отвердении полимерной композиции в щелевом зазоре ее усадка направлена по нормали к поверхности цилиндра. После отверждения полимерной композиции внутренний диаметр футерованного цилиндра будет больше диаметра формующего стержня на величину

 

Восстановление гидроцилиндров лесных машин, (4.1.)

 

где Восстановление гидроцилиндров лесных машин - усадка полимера в первые сутки после нанесения покрытия;

Восстановление гидроцилиндров лесных машин - усадка за время Восстановление гидроцилиндров лесных машин.

Величина Восстановление гидроцилиндров лесных машин не зависит от диаметра цилиндра, но прямо пропорциональна толщине слоя полимерного покрытия:

 

Восстановление гидроцилиндров лесных машин, (4.2.)

 

где ky - коэффициент пропорциональности, выражающий несвободную усадку полимера;

t - толщина слоя полимерного покрытия.

Величина ky равна сумме величин ky24 и kyВосстановление гидроцилиндров лесных машин, выражающих усадку через сутки после нанесения полимерного покрытия и усадку за время Восстановление гидроцилиндров лесных машин, т.е.

 

ky=ky24+kyВосстановление гидроцилиндров лесных машин. (4.3.)

 

Значения k для ряда полимерных композиций, применяемых с целью нанесения покрытия, приведены в табл. 4.1.

 

 

Таблица 4.1.

 

Определение коэффициентов усадки.

Примерная композиция

ky24

kyВосстановление гидроцилиндров лесных машин

ky=ky24+kyВосстановление гидроцилиндров лесных машин

АСТ-Т + 10% графита

0,017

0,005

0,022

Бутакрил + 10% графита

0,017

0,005

0,022

ЭД-20 + 15% графита, отвердитель ПЭПА

0,015

0,005

0,020

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 18.08.10 | [ + ]   [ - ]  
Просмотров: 186
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.