Бесплатные рефераты


В мире
Календарь новостей
« Авг.2018
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
  12345
6789101112
13141516171819
20212223242526
2728293031  
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Термическая обработка металлов. Композиционные материалы

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Термическая обработка металлов. Композиционные материалы

Реферат по дисциплине «Материаловедение» выполнил Ковалёв В.В.

Тираспольский межрегиональный университет

Типасполь, 2005

1. Теория и технология термической обработки. Виды термической обработки. Отжиг, нормализация, закалка, старение, улучшение.

Термической обработкой называют процессы, связанные с нагревом и охлаждением, вызывающие изменения внутреннего строения сплава, и в связи с этим изменения физических, механических и других свойств.

Термической обработке подвергают полуфабрикаты (заготовки, поковки, штамповки и т. п.) для улучшения структуры, снижения твердости, улучшения обрабатываемости, и окончательно изготовленные детали и инструмент для придания им требуемых свойств.

В результате термической обработки свойства сплавов могут меняться в широких пределах. Например, можно получить любую твердость стали от 150 до 250 НВ (исходное состояние) до 600—650 НВ (после закалки). Возможность значительного повышения механических свойств с помощью термической обработки по сравнению с исходным состоянием позволяет увеличить допускаемые напряжения, а также уменьшить размеры и вес детали.

Основоположником теории термической обработки является выдающийся русский ученый Д. К. Чернов, который в середине XIX в., наблюдая изменение цвета каления стали при ее нагреве и охлаждении и регистрируя температуру «на глаз», обнаружил критические точки (точки Чернова).

Основными видами термической обработки стали являются отжиг, нормализация, закалка и отпуск.

Отжиг. Отжигом называют операцию нагрева, выдержки при заданной температуре и охлаждения заготовок. Академик А. А. Бочвар дал определение двух родов отжига: отжиг первого рода — приведение структуры из неравновесного состояния в более равновесное (возврат или отдых, рекристаллизационный отжиг, или рекристаллизация, отжиг для снятия внутренних напряжений и диффузионный отжиг или гомогенизация); отжиг второго рода — изменение структуры сплава посредством перекристаллизации около критических точек с целью получения равновесных структур; к отжигу второго рода относятся полный, неполный и изотермический отжиги.

Рассмотрим виды отжига применительно к стали.

Возврат стали — нагрев до температуры 200—400 °С для уменьшения или снятия наклепа. При возврате наблюдается уменьшение искажений в кристаллических решетках у кристаллов и частичное восстановление физико-химических свойств.

Рекристаллизационный отжиг (рекристаллизация) стали происходит при температуре 500—550 °С; отжиг для снятия внутренних напряжений — при температуре 600—700 °С. Эти виды отжига применяют для заготовок, обработанных давлением (прокаткой, волочением, ковкой, штамповкой). При рекристаллизационном отжиге деформированные вытянутые зерна становятся равноосными, в результате твердость снижается, а пластичность и ударная вязкость повышаются. Для полного снятия внутренних напряжений в стали нужна температура не менее 600 °С.

Охлаждение после выдержки при заданной температуре должно быть достаточно медленным; при ускоренном охлаждении вновь возникают внутренние напряжения.

Диффузионный отжиг применяют в тех случаях, когда в стальных заготовках имеется внутрикристаллическая ликвация. Выравнивание состава в зернах аустенита достигается диффузией углерода и других компонентов наряду с самодиффузией железа. В результате сталь становится однородной по составу (гомогенной), поэтому диффузионный отжиг называется также гомогенизацией.

Температура гомогенизации должна быть достаточно высокой (1100 -1200 °С), однако нельзя допускать пережога и оплавления зёрен. При пережоге кислород воздуха окисляет железо, проникает в толщу его, в результате образуются кристаллиты, разобщенные оксидными оболочками. Пережжённые заготовки являются неисправимым браком.

При полном отжиге понижаются твердость и прочность стали; этот отжиг связан с фазовой перекристаллизацией при температурах точек Ас1 и Ac3. В результате полного отжига структура стали становится близкой к равновесной, что способствует лучшей обрабатываемости резанием и штамповкой. Полный отжиг используют также как окончательную операцию термической обработки заготовок. Для полного отжига сталь нагревают на 30—50° выше температуры линии GSK и медленно охлаждают. Операция выполняется с охлаждением заготовок в печи при частичном подогреве, чтобы скорость охлаждения былa в пределах 10—100 °С/ч для легированной стали и 150—200 оС/ч для углеродистой стали.

Термическая обработка металлов. Композиционные материалы 

Отжигом достигается также измельчение зерна. Крупнозернистая структура получается, например, в результате перегрева стали, такая структура называется видманштетовой. На рис. 1 приведена видманштетовая структура доэвтектоидной стали (х50); она характерна расположением феррита (светлые участки) и перлита в виде вытянутых пластин под различными углами друг к другу.

В заэвтектоидных сталях видманштетовая  структура характеризуется штрихообразным  расположением избыточного цементита.

Неполный отжиг связан с фазовой  перекристаллизацией лишь при температуре  точки Ас1, его применяют после горячей  обработки давлением, когда у заготовок  мелкозернистая структура.

Для доэвтектоидной стали этот отжиг Рис. 1. используют в целях улучшения  обрабатываемости резанием.

Отжиг на зернистый перлит служит для повышения пластичности и вязкости стали и уменьшения ее твердости. Для получения зернистого перлита заготовки нагревают несколько выше точки Ac1 и выдерживают недолго, чтобы цементит растворился в аустените не полностью. Затем производят охлаждение до температуры несколько ниже Аr1 и выдерживают при такой температуре несколько часов.

При изотермическом отжиге после нагрева и выдержки заготовки быстро охлаждают до температуры несколько ниже точки Аr1 и выдерживают при этой температуре до полного распада аустенита в перлит, после чего охлаждают на воздухе. Применение изотермического отжига обеспечивавает повышение производительности труда, например, обычный отжиг легированной стали длится 13-15 ч, а изотермический – 4-7 ч.

Нормализация. При нормализации сталь после нагрева охлаждается не в печи, а на воздухе в цехе, что экономичнее. Нагрев ведется до полной перекристаллизации (на 30—50° выше точек Ас3, и Аст); в результате нормализации сталь приобретает мелкозернистую и однородную структуру. Твердость и прочность стали после нормализации выше, чем после отжига. Структура низкоуглеродистой стали после нормализации ферритно-перлитная, но более дисперсная, чем после отжига, а у средне- и высокоуглеродистой сталей — сорбитная; нормализация может заменить для первой отжиг, а для вторых — закалку с высоким отпуском. Часто нормализацией улучшают структуру перед закалкой.

Закалка и отпуск стали.

Целью закалки и отпуска стали является повышение твердости и прочности. Закалка и отпуск стали необходимы для очень многих деталей и изделий. Закалка основана на перекристаллизации при нагреве и предотвращении перехода аустенита в перлит путем быстрого охлаждения. Закаленная сталь имеет неравновесную структуру мартенсита, троостита или сорбита.

Чаще всего сталь резко охлаждают на мартенсит. Для смягчения действия закалки сталь отпускают, нагревая до температуры ниже точки А1. При отпуске структура стали из мартенсита закалки переходит мартенсит отпуска, троостит отпуска, сорбит отпуска.

Закалка стали. Температура нагрева стали при закалке та же, что и при полном отжиге: для доэвтектоидной стали на 30—50 °С выше точки Ас3, для заэвтектоидной — на 30—50° выше точки Aс1. При нагреве доэвтектоидной стали до температуры между точками Ас1 и Ac3 (неполная закалка) в структуре быстро охлажденной стали наряду с закаленными участками будет присутствовать нерастворенный при нагреве (в аустените) феррит, резко снижающий твердость и прочность. Поэтому для доэвтектоидной стали обязательна полная закалка с нагревом выше точки Ас3.

В заэвтектоидной стали избыточной фазой является цементит, который по твердости не уступает мартенситу и даже превосходит его, поэтому сталь достаточно нагреть на 30—50 °С выше точки Ас1.

Нагревать заготовки, особенно крупные, нужно постепенно во избежание местных напряжений и трещин, а время выдержки нагретых заготовок должно быть достаточным, чтобы переход в структуру аустенита полностью завершился.

Скорость охлаждения заготовок при закалке должна быть такой, чтобы получить заданную структуру. Критическая скорость закалки изменяется в широких пределах в зависимости от наличия легирующих компонентов в стали. Для простых сплавов железо—углерод эта скорость очень высока. Присутствие в стали кремния и марганца облегчает закалку на мартенсит, так как для такой стали С-образные кривые на диаграмме изотермического превращения аустенита будут сдвинуты вправо и критическая скорость закалки понижается.

Наиболее распространено охлаждение заготовок погружением их в воду, в щелочные растворы воды, в масло, расплавленные соли и т. д. При этом сталь закаливается на мартенсит или на бейнит.

При закалке применяют различные способы охлаждения в зависимости от марки стали, формы и размеров заготовки.

Термическая обработка металлов. Композиционные материалы

Простую закалку в одном охладителе (чаще всего в воде или водных растворах) выполняют, погружая в него заготовки до полного  охлаждения. На рис. 2 режим охлаждения при такой  закалке характеризует кривая 1.

Для получения наибольшей глубины  закаленного слоя применяют охлаждение  при интенсивном обрызгивании.

Прерывистой закалкой называют такую,  при которой заготовку охлаждают  последовательно в двух средах:  первая среда — охлаждающая жидкость  (обычно вода), вторая — воздух или масло  (см. кривую 2 на рис. 2). Резкость такой  закалки меньше, чем предыдущей. Рис. 2.

При ступенчатой закалке заготовку быстро погружают в соляной расплав и охлаждают до температуры несколько выше Мн. Выдержка обеспечивает выравнивание температуры от поверхности к сердцевине заготовки, что уменьшает напряжения, возникающие при мартенситном превращении; затем заготовку охлаждают на воздухе (кривая 3 на рис. 2).

Изотермическая закалка (закалка в горячих средах) основана на изотермическом распадении аустенита. Охлаждение ведется до температуры несколько выше начала мартенситного превращения (200—300 °С) в зависимости от марки стали. В качестве охладителя используют соленые расплавы или масло, нагретое до 200—250 °С. При температуре горячей ванны заготовка выдерживается продолжительное время, пока пройдет инкубационный период и период превращения аустенита (кривая 4 на рис. 2). В результате получается структура бейнита, по твердости близкая к мартенситу, но более вязкая и пластичная. Последующее охлаждение производится на воздухе.

При изотермической закалке вначале требуется быстрое охлаждение со скоростью не менее критической, чтобы избежать распадения аустенита. Следовательно, по этому методу можно закаливать лишь небольшие (диаметром примерно до 8 мм) заготовки из углеродистой стали, так как массивные заготовки не удается быстро охладить. Это не относится однако к легированным сталям, большинство марок которых имеют значительно меньшие критические скорости закалки. Большим преимуществом изотермической закалки является возможность рихтовки (выправления искривлений) заготовок во время инкубационного периода превращения аустенита (который длится несколько минут), когда сталь еще пластична.

Закалка при помощи газовой горелки. Кислородно-ацетиленовое пламя газовой горелки с температурой около 3200 °С направляется на поверхность закаливаемой заготовки и быстро нагревает ее поверхностный слой до температуры выше критической. Вслед за горелкой перемещается трубка, из которой на поверхность заготовки направляется струя воды, закаливая нагретый слой. Этот способ применяется для изделий с большой поверхностью (например, для прокатных валков, зубьев больших шестерен и т. д.).

Закалка токами высокой частоты по методу В. П. Вологдина нашла очень широкое применение в промышленности, так как отличается высокой производительностью, легко поддается автоматизации.

Обработка холодом. Этот метод применяется для повышения твердости стали путем перевода остаточного аустенита закаленной стали в мартенсит. Холодом обрабатывают углеродистую сталь, содержащую больше 0,5 % С, у которой температура конца мартен-ситного превращения находится ниже 00 С, а также легированную сталь (например, быстрорежущую).

Отпуск стали. Отпуск смягчает действие закалки, снимает или уменьшает остаточные напряжения, повышает вязкость, уменьшает твердость и хрупкость стали. Отпуск производится путем нагрева заготовок до температуры ниже критической; при этом в зависимости от температуры могут быть получены структуры мартенсита, троостита или сорбита отпуска.

При низком отпуске (нагрев до температуры 150—200 °С) в структуре стали в основном остается мартенсит, который однако имеет другую решетку, как сказано выше. Кроме того, начинается выделение карбидов железа из пересыщенного твердого раствора углерода в a-железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение вязкости стали, а также уменьшение внутренних напряжений в заготовках. Для низкого отпуска, заготовки выдерживают в течение определенного времени обычно в масляных или солевых ваннах. Если для низкого отпуска заготовки нагревают в атмосфере воздуха, то для контроля температуры часто пользуются цветами побежалости, появляющимися на зачищенной поверхности заготовки. Появление этих цветов связано с интерференцией белого цвета в пленках оксида железа, возникающих на поверхности заготовки при ее нагреве. Для углеродистой стали в интервале температур от 220 до 330 °С в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Для легированной стали соответствующие температуры выше. Низкий отпуск применяют для режущего инструмента из углеродистых и легированных сталей, измерительного инструмента, цементированных заготовок, а также других изделий, работающих в условиях трения на износ.

При среднем (нагрев в пределах 300—500 °С) и высоком (500—700 °С) отпуске структура мартенсита переходит соответственно в структуру троостита или сорбита. Чем выше температура отпуска, тем меньше твердость отпущенной стали и тем больше ее вязкость. При высоком отпуске сталь получает наилучшее сочетание механических свойств: повышенные прочность, вязкость и пластичность; поэтому закалку на мартенсит с последующим высоким отпуском называют улучшением стали. Средний отпуск применяют при производстве кузнечных штампов, пружин, рессор, а высокий—для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

2. Химико – термическая обработка. Её виды.

Целью химико-термической обработки является получение поверхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или коррозионной стойкостью. Для этого нагретые заготовки подвергают воздействию среды, из которой путем диффузии в поверхностный слой заготовок переходят нужные для получения заданных свойств элементы: углерод, азот, алюминии, хром, кремний и др.

Эти элементы диффундируют в поверхностный слой лучше, когда они выделяются в атомарном состоянии при разложении какого-либо соединения. Подобное разложение легче всего происходит в газах, поэтому их и стремятся применять для химико-термической обработки стали. Выделяющийся при разложении газа активизированный атом элемента проникает в решетку кристаллов стали и образует твердый раствор или химическое соединение. Наиболее распространенными видами химико-термической обработки стали являются цементация, азотирование, цианирование.

Цементация. Цементацией называется поглощение углерода поверхностным слоем заготовки, который после закалки становится твердым; в сердцевине за готовка остается вязкой. Цементации подвергают такие изделия, которые работают одновременно на истирание и удар.

Существуют два вида цементации: цементация твердым карбюризатором и газовая цементация.

При цементации твердым карбюризатором применяют древесный уголь в смеси с углекислыми солями — карбонатами (ВаСО3, Nа2СО3, К2СО3, СаСО3 и др.).

Цементации подвергают заготовки из углеродистой или легированной стали с массовым содержанием углерода до 0,08 %. Для деталей, подверженных большим напряжениям, применяют стали, содержащие до 0,3 % С. Такое содержание углерода обеспечивает высокую вязкость сердцевины после цементации.

Для цементации заготовки помещают в стальные цементационные ящики, засыпают карбюризатором, покрывают крышками, тщательно обмазывают щели глиной, помещают ящики в печь и выдерживают там 5—10 ч при температуре 930—950 °С.

Технология цементации деталей в твердом карбюризаторе заключается в следующем. Детали очищают от грязи, масла, окалины и упаковывают в цементационный ящик. На дно ящика насыпают карбюризатор слоем 25—30 мм,

Термическая обработка металлов. Композиционные материалы 

на него укладывают первый ряд деталей.

Расстояние между деталями должно быть  15—20 мм, а между деталями и стенкой  ящика 15—25 мм. На первый ряд деталей  насыпают карбюризатор и укладывают  следующий ряд деталей, снова засыпают  карбюризатор, и так до заполнения ящика  до верха. Сверху ящик закрывают крышкой  и обмазывают глиной (рис. 3).

Рис. 3. Упаковка деталей в цементационный ящик:

1 — ящик; 2 — карбюризатор; 8 — «свидетели»; 4 — детали.

При нагревании в присутствии угля углекислый барий при температуре 900 °С распадается по реакции

ВаСО3 + С ® ВаО + 2СО.

В результате образуется оксид углерода, который на поверхности стальных заготовок диссоциирует с выделением активного атомарного углерода; этот углерод адсорбируется и диффундирует в поверхностный слой заготовки, в результате повышается его массовое содержание в аустените, далее по достижении предела растворимости образуется цементит

3Fe + С ® Fe3С.

Поверхности, не подлежащие цементации, изолируют от карбюризатора нанесением на них обмазок или омедняют электролитическим способом. Глубина цементации обычно составляет 0,5—3 мм; цементированные заготовки содержат в поверхностном слое 0,95— 1,1 % С.

При газовой цементации в качестве карбюризатора применяют различные газы и газовые смеси (природный, светильный, генераторный газы и др.). В их состав кроме оксида углерода входят углеводороды, из которых особое значение имеет метан СН4. Газовую цементацию выполняют в герметически закрытых безмуфельных или муфельных печах непрерывного действия при температуре 900— 950 °С и непрерывном потоке цементирующего газа или в шахтных печах периодического действия. В шахтных печах для цементации используют жидкие углеводороды (керосин, синтин), которые каплями подаются в печь и, испаряясь, образуют газы- карбюризаторы.

Преимуществом газовой цементации перед цементацией твердым карбюризатором являются двух-трехкратное ускорение процесса, чистота рабочего места, возможность лучшего управления процессом. Газовая цементация применяется очень широко.

Цементированные заготовки подвергают однократной или двойной закалке и низкому отпуску. Однократную закалку с нагревом до 820—850 °С применяют в большинстве случаев, особенно для наследственно-мелкозернистых сталей, когда продолжительная вы-держка в горячей печи при цементации не сопровождается большим ростом зёрен аустенита. Такая закалка обеспечивает частичную перекристаллизацию и измельчение зерна сердцевины заготовки, а также измельчение зерна и полную закалку цементированного слоя. Закалка после газовой цементации часто производится из цементационной печи после подструживания заготовок до 840— 860 °С.

Двойную закалку применяют, когда нужно получить высокую ударную вязкость и твёрдость поверхностного слоя (например, для зубчатых колес). При этом производят;

I) закалку пли нормализацию с нагревом до температуры 880- 9000 С для исправления структуры сердцевины и ликвидации (растворения) цементитной сетки поверхностного слоя; 2) закалку с нагревом до температуры 760— 780 °С для измельчения структуры цементированного слоя и придания ему высокой твердости (до 60—64 HRC для углеродистой стали). Закаленные заготовки подвергают низкому отпуску (150— 170 °С).

Углеродистая сталь имеет очень большую критическую скорость закалки, и сердцевина заготовок из такой стали независимо от скорости охлаждения имеет структуру перлит + феррит. Поэтому, чтобы получить детали с сердцевиной высокой прочности (сорбит + феррит), применяют легированную сталь, имеющую меньшую критическую скорость закалки (например, сталь марок 20Х, 18ХГТ, 25ХГМ и др.).

Азотирование. Цель азотирования — придание поверхностному слою деталей высокой твердости, износостойкости и коррозионной стойкости. Азотирование осуществляется при выделении активного азота из диссоциирующего аммиака

2NH3 ® 2N + ЗН2.

Азотируют легированную сталь, содержащую алюминий, титан, вольфрам, ванадий, молибден или хром (например, сталь марок 35ХМЮА, 35ХЮА и др.).

Перед азотированием заготовки подвергают закалке и высокому отпуску. Азотирование производят в печах при температуре 500— 600 °С. Активный азот, выделяющийся при диссоциации аммиака, диффундирует в поверхностный слой и вместе с перечисленными легирующими элементами и железом образует очень твердые химические соединения — нитриды (A1N, MoN, Fe3N и др.).

Азотирование на глубину 0,2—0,5 мм продолжается 25—60 ч и в этом его основной недостаток. Однако азотирование имеет ряд преимуществ перед цементацией: температура нагрева сравнительно низкая, а твердость более высокая (1100—1200 по Виккерсу, вместо 800—900 после цементации и закалки); у азотированных изделий большие коррозионная стойкость, сопротивление усталости и меньшая хрупкость. Поэтому азотирование широко применяют для деталей из стали и чугуна (шестерен, коленчатых валов, цилиндров двигателей внутреннего сгорания и т. д.).

Азотирование приводит к некоторому увеличению размеров заготовок, поэтому после азотирования их подвергают шлифованию.

Цианирование. Цианирование — насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным и газовым.

Жидкостное цианирование производится в ваннах с расплавами цианистых солей (NaCН, KCН, Са(CN)2., и др.) при температуре, достаточной для разложения их с выделением активных атомов Си N.

Низкотемпературное (550—600 °С) цианирование применяют главным образом для инструментов из быстрорежущей стали с целью повышения их стойкости и производится в расплавах чистых цианистых солей. Высокотемпературное (800—850 °С) цианирование осуществляется в ваннах, содержащих 20—40 %-ные расплавы цианистых солей с нейтральными солями (NaCl, Na.2CO3 и др.) для повышения температуры плавления ванны. Продолжительность жидкостного цианирования от 5 мин до 1 ч. Глубина цианирования 0,2—0,5 мм.

После цианирования заготовки подвергают закалке и низкому отпуску. Цианирование, как и цементацию, применяют для различных изделий, при этом коробление заготовок значительно меньше, чем при цементации, а износо- и коррозионная стойкость более высокие. Недостатком жидкостного цианирования является ядовитость цианистых солей, а также их высокая стоимость.

Газовое цианирование отличается от газовой цементации тем, что к цементирующему газу добавляют аммиак, дающий активизированные атомы азота. Газовое цианирование, так же как и жидкостное, разделяется на низкотемпературное и высокотемпературное.

При низкотемпературном (500—700 °С) газовом цианировании в сталь преимущественно диффундирует азот (с образованием нитридов), а углерод диффундирует в малых количествах. Это цианирование так же как и жидкостное низкотемпературное, применяют для обработки инструментов из быстрорежущей стали.

При высокотемпературном газовом цианировании (800—850 °С) в сталь диффундирует значительное количество углерода с образованием аустенита. После высокотемпературного цианирования заготовки закаливают.

При газовом цианировании, называемом также нитроцементацией, отпадает необходимость в применении ядовитых солей и, кроме того, имеется возможность обработки более крупных деталей.

Диффузионная металлизация. Наиболее распространенными видами диффузионной металлизации являются алитирование, хромирование, силицирование.

Алитирование представляет собой поверхностное насыщение стальных и чугунных заготовок алюминием с образованием твердого раствора алюминия в железе. Его применяют преимущественно для деталей, работающих при высоких температурах (колосников, дымогарных труб и др.), так как при этом значительно (до 10000С) повышается жаростойкость стали.

Для алитирования алюминий сначала наносят на заготовку распылением жидкой струи сжатым воздухом, затем нанесенный слой алюминия защищают жаростойкой обмазкой и производят диффузионный отжиг заготовок при температуре 920 °С в течение 3 ч. В процессе отжига поверхностный слой заготовки насыщается алюминием на глубину в среднем 0,5 мм.

Диффузионное хромирование производится в порошковых смесях, составленных из феррохрома и шамота, смоченных соляной кислотой или в газовой среде при разложении паров хлорида хрома СrCl2. Хромированию подвергаются в основном стали с массовым содержанием углерода не более 0,2 %. Хромированный слой низкоуглеродистой стали незначительно повышает твердость, но обладает большой вязкостью, что позволяет подвергать хромированные детали сплющиванию, прокатке и т. п. Хромированные детали имеют высокую коррозионную стойкость в некоторых агрессивных средах (азотной кислоте, морской воде). Это позволяет заменять ими детали из дефицитной высокохромовой стали.

Силицирование — насыщение поверхностного слоя стальных заготовок кремнием, обеспечивающее повышение стойкости против коррозии и эрозии в морской воде, азотной, серной и соляной кислотах, применяется для деталей, используемых в химической промышленности.

Силицированный слой представляет собой твердый раствор кремния в a-железе. Существует силицирование в порошкообразных смесях ферросилиция, а также газовое силицирование в среде хлорида кремния SiCl4.

3. Композиционные материалы.

Композиционные материалы (композиты) состоят из химически разнородных компонентов, нерастворимых друг в друге и связанных между собой в результате адгезии. Основой композитов является пластическая матрица, которая связывает наполнители, определяет форму изделия, его монолитность, теплофизические, электро- и радиотехнические свойства, герметичность, химическую стойкость, а также распределение напряжений между наполнителями.

В качестве матрицы применяют металлы (алюминий, магний, их сплавы), полимеры (эпоксидные, фенолформальдегидные смолы, полиамиды), керамические, углеродные материалы.

Наполнители чаще всего играют роль упрочнителей, воспринимают основную долю нагрузки и определяют модуль упругости и твердость композита, а иногда также фрикционные, магнитные, теплофизические и электрические свойства. Наполнителями служат тонкая (диаметром несколько микрометров) проволока из высокопрочной стали, вольфрама, титана, а также стеклянные, полиамидные, углеродные, боридные волокна и волокна на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов) и др.

Композиты получают пропиткой наполнителей матричным раствором, нанесением материала матрицы на волокна плазменным напылением, электрохимическим способом, введением тугоплавких наполнителей в расплавленный материал матрицы, прессованием, спеканием.

Композиционные материалы с металлической матрицей

Термическая обработка металлов. Композиционные материалы

Рис.4. Схема структуры (а) и армирования непрерывными волокнами (б) композиционных материалов

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочным волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие или иную композицию, получили название композиционные материалы (рис.4).

3.1. Волокнистые композиционные материалы.

На рис.4 приведены схемы армирования волокнистых композиционных материалов. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длины волокна к диаметру l/d ≈ 10÷103, и с непрерывным волокном, в которых l/d = ∞. Дискретные волокна располагаются в матрице хаотично. Диаметр волокон от долей до сотен микрометров. Чем больше отношение длины к диаметру волокна, тем выше степень упрочнения.

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму, по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50–100 %), модуля упругости, коэффициента жесткости (Е/γ) и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Таблица1. Механические свойства композиционных материалов на металлической основе

Материал

σВ

σ-1

Е, ГПа

σВ/γ

Е/γ

МПа

Бор–алюминий (ВКА–1А)

1300

600

220

500

84,6

Бор–магний (ВКМ–1)

1300

500

220

590

100

Алюминий–углерод (ВКУ–1)

900

300

220

450

100

Алюминий–сталь (КАС–1А)

1700

350

110

370

24,40

Никель–вольфрам (ВКН–1)

700

150

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 18.08.10 | [ + ]   [ - ]  
Просмотров: 254
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.