Бесплатные рефераты


В мире
Календарь новостей
« Авг.2018
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
  12345
6789101112
13141516171819
20212223242526
2728293031  
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Технология изготовления магнитопроводов

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Технология изготовления магнитопроводов

Общие положения

Магнитопроводом называется деталь или комплект деталей, предназначенных для прохождения с определенными потерями магнитного потока, возбуждаемого электрическим током в обмотках намоточный изделий.

Магнитопроводы являются составными частями схемотехнически элементов РЭА: трансформаторов, дросселей, магнитных головок, фильтров, контуров, запоминающих устройств и др. Форма деталей

Технология изготовления магнитопроводов

Технология изготовления магнитопроводов

Рис. 12.1

образующих магнитопровод, а также вид и физические свойства материалов, используемых для их изготовления, обусловлены назначением; конструктивными особенностями схемного элемента. По этим признакам магнитопроводы разделяют на три группы: пластинчатые, лентные и формованные.

Пластинчатые магнитопроводы представляют собой пакеты, собранные из штампованных плоских пластин. Они бывают двух типов (рис. 12.1): броневые (а) и стержневые (б).

Технология изготовления магнитопроводов

Технология изготовления магнитопроводов

Ленточные магнитопроводы имеют форму круглых (рис. 12.2,а ) или прямоугольных со скругленными углами колец (рис. 12.2,б ) полученных спиральной навивкой на оправку одной ленточной заготовки или П-образной гибкой нескольких предварительно нарезанных полос. Во втором случае кольца получаются разъемными с плоскостью разреза (рис. 12.2, в). Неразрезные ленточные магнитопроводы характеризуются лучшими магнитными характеристиками по сравнению с раз-резными ленточными и пластинчатыми, так как в последних неизбежны воздушный зазор и частичное замыкание торцов. Однако неразрезные ленточные магнитопроводы имеют следующие недостатки: сложность и большая трудоемкость намоточных работ. Достоинством разрезных ленточных магнитопроводов является то, что катушки для них можно изготавливать на обычных намоточных станках.

Формованные магнитопроводы состоят из одной или нескольких монолитных объемных деталей, изготовленных из порошкообразных магнитодиэлектриков или ферритов с использованием керамической технологии (формование и спекание).

Формованные магнитопроводы нашли широкое применение в высокочастотных устройствах РЭА. На рис. 12.3 дан пример броневого магнитопровода из магнитодиэлектрика: а — с замкнутой; б — с разомк- нутой магнитной цепью (/ — подстроечник, 2 — верхняя чашка, 3 — нижняя чашка). На рис. 12.4 приведены некоторые образцы магнитопроводов из ферритов: рис. 12.4, а_и б — замкнутый П-образный прямо угольного сечения; рис. 12.4, в и г —замкнутый П-образный круглого сечения, рис. 12.4, д — О-образный; рис. 12.4, е — Г-образный, рис. 12.4, ж — Е-образный; рис. 12.4, з.— магнитной головки.

Технологические методы достижения заданных физических свойств, точности размеров и качества поверхности магнитопроводов

Магнитопроводы должны иметь высокую магнитную проницаемость, незначительную коэрцитивную силу, стабильные магнитные характеристики в рабочем диапазоне температур и во времени, минимальные потери на гистерезис, рассеивание и вихревые токи, устойчивость к посторонним механическим воздействиям.

Соответствие физических свойств магнитопровода этим требованиям достигается, прежде всего, выбором магнитного материала и построением ТП. При переработке магнитных материалов в детали магнитопроводов исходные магнитные свойства их изменяются под тепловым и силовым воздействием инструментов и технологических сред. По этой причине в ТП изготовления включают ряд операций по контролю и восстановлению магнитных свойств деталей магнитопроводов, а условия выполнения операций формообразования подбирают с расчетом на то, чтобы минимально воздействовать на изменения этих свойств.

В качестве магнитных материалов используют электротехническую сталь, железой никелевые сплавы, магнитодиэлектрики и ферриты. Электротехнические стали, и пермаллои применяют в виде горячекатанного и холоднокатанного проката на листах и рулонах толщиной 0,04—0,5 мм. Горячекатаные стали используют в магнитопроводах, работающих на низких частотах, а холоднокатаные — в магнитопроводах с повышенными магнитными характеристиками. Железоникелевые сплавы (пермаллои) характеризуются в 10—20 раз большей магнитной проницаемостью в слабых магнитных полях по сравнению с электротехнической сталью. Высоконикелевые пермаллои (72—80% никеля) марок 79НМ, 80НХС и другие используют для изготовления сердечников малогабаритных дросселей и трансформаторов низкой частоты, магнитных головок и др. Низконикелевые пермаллои (30—50% никеля) марок 8НС, 45Н, 50Н, 50НХС и другие применяют для изготовления магнитопроводов силовых трансформаторов и дросселей, магнитных головок и др.

Электротехнические стали и пермаллои характеризуются малым удельным электрическим сопротивлением (10-7—10-6Ом'М). Использование их в магнитопроводах, работающих на высоких частотах, не представляется возможным из-за больших потерь на вихревые токи, возрастающих пропорционально квадрату частоты. Для магнитопроводов, работающих на высоких частотах, используют магнитодиэлектрики, которые состоят из зерен магнитного материала, разделенных диэлектриком. По сравнению с металлическими магнитными материалами они характеризуются более высоким электрическим сопротивлением (10-3—1 Ом-м). В качестве магнитопроводов из магнитодиэлектриков берут карбонильное железо (высокодисперсный порошок, состоящий в основном из частиц сферической формы), альсифер (магнитомягкий сплав с высокой магнитной проницаемостью, содержащий' около 9,5% кремния и 5,5% алюминия, остальное — железо; ГОСТ 122187—76) и пермаллои.

Основные достоинства магнитодиэлектриков: малые потери на вихревые токи, стабильные магнитные характеристики в рабочем интервале температур и во времени. К числу недостатков следует отнести небольшую магнитную проницаемость (1,26·10-5 — 7,53·10~б Гн/м) на радиочастотах, что ограничивает возможность повышения добротности различных индуктивных элементов. Для работы с малыми потерями на высоких частотах до нескольких десятков мегагерц используют магнитные материалы керамического типа, ферриты, получаемые спеканием при высокой температуре смеси окислов железа с окислами никеля, цинка, марганца, магния, меди или другого двухвалентного металла. Ферриты характеризуются высокой магнитной проницаемостью (1,26·10-5 — 2,52 • 10ֿ³ Гн/м) и удельным электрическим сопротивлением (1 - 105 Ом•м)

Для обеспечения требуемой точности и формы и размеров при изготовлении пластинчатых магнитопроводов с заданной шероховатостью поверхности используют штамповку, обработку резанием и физико-химические методы. При штамповке и обработке резанием в поверхностных слоях материала в результате силового воздействия инструмента кристаллы правильной формы, характерные для исходного материала, разрушаются и ориентируются в направлении движения инструмента. В результате ухудшаются характеристики магнитопроводов, например, магнитная проницаемость уменьшается, а коэрцитивная сила увеличивается. Для восстановления магнитных характеристик материала проводят отжиг, вызывающий рекристаллизацию материала.

При изготовлении разрезных ленточных магнитопроводов разрезание является одной из ответственных операций. Отклонение режимов этой операции от оптимальных может привести к появлению короткозамкнутых витков и наклепу, в результате возрастут потери на вихревые токи. Разрезание магнитопроводов осуществляют различными способами, например, фрезерованием, абразивным кругом, электроискровой обработкой и т. д. При фрезеровании поверхность разреза получается неровной, а витки магнитопровода оказываются короткозамкнутыми. Кроме того, имеет место наклеп и изменение ориентации зерен в месте разреза. Разрезание магнитопроводов абразивным кругом (шероховатость обработанной поверхности Rа 1,25 мкм) и электроискровой обработкой (Rz 20 мкм) дают лучшие результаты. После разрезания абразивным кругом отпадает необходимость применения последующего шлифования. Электроискровая обработка позволяет избежать механического воздействия на магнитопровод и замыкание отдельных его витков. Поверхностный слой, в котором в результате теплового воздействия происходит изменение ориентации зерен до глубины 0,05—0,08, мм, удаляется при последующем шлифовании торцов магнитопровода.

Точность размеров, формы и качество поверхности формованных магнитопроводов обеспечивается точностью размеров и шероховатостью поверхности оформляющей полости пресс-форм. Магнитные характеристики формованных магнитопроводов обеспечиваются качеством порошка магнитного материала и материала диэлектрической связи. Количество связки при изготовлении магнитопроводов должно быть по возможности минимальным, так как ее увеличение резко снижает магнитную проницаемость магнитопровода и увеличивает диэлектрические потери. Формовочная смесь на основе полистирола обладает хорошей текучестью, поэтому ее используют для изготовления сложных по форме магнитопроводов. Магнитная проницаемость формованных магнитопроводов зависит от их плотности, которая обеспечивается выбором давления при прессовании. С увеличением давления прессования магнитная проницаемость возрастает до определенного значения для данного типа магнитного материала. При дальнейшем увеличении давления прессования возрастают потери на гистерезис, так как имеет место пластическая деформация феррочастиц, возрастает электропроводность и потери на вихревые токи из-за разрушения изоляционной пленки вокруг феррочастиц.

Оптимальное давление прессования для магнитодиэлектриков лежит в интервале 600— 1000 МПа, а для ферритов — 80-200 МПа. Продолжительность выдержки под нагрузкой не влияет на плотность магнитного материала. Обеспечение равномерной плотности магнитного материала в формованном магнитопроводе осуществляется прессованием в пресс-формах с двойным давлением сверху и снизу. Кроме того, в магнитопроводах из ферритов в случае неравномерной плотности при последующем спекании возникают значительные внутренние напряжения, вызывающие коробление и растрескивание. Для исключения растрескивания магнитопроводов из ферритов проводят следующие технологические мероприятия: перед спеканием нагревом из них удаляют связку; при спеканий скорость подъема температуры ограничивают 200—300 К/ч из-за быстрого испарения оставшейся связки; после выдержки при температуре спекания требуется медленное охлаждение со скоростью 50—100-.К/Ч.

Магнитопроводы с одинаковыми магнитными характеристиками могут быть получены только при одинаковой температуре по всей рабочей зоне печи. Температурный режим поддерживается с точностью ±5 К автоматическим регулированием.

Технологические маршруты изготовления пластинчатых магнитопроводов и содержание основных операций

Типовой ТП изготовления пластинчатых магнитопроводов включает следующие основные операции: контроль материала на соответствие техническим условиям, резка материала на ленты (полосы) требуемой ширины, вырубка пластин магнитопровода, снятие заусенцев, правка пластин магнитопровода, отжиг, изоляция пластин, сборка пакета.

Контроль материала на соответствие техническим условиям. При поставке исходный материал контролируют по магнитной проницаемости и коэрцитивной силе.

Резка материала на ленты (полосы) требуемой ширины производится многодисковыми, гильотинными или роликовыми ножницами. Правильный раскрой материала, как было рассмотрено в гл. 4, дает большую экономию материала и снижает себестоимость выпускаемых изделий. Большое внимание уделяют получению прямолинейных кромок ленты (полосы особенно при безотходном раскрое, например П-образных (рис. 12.5, а) и Ш-образных пластин (рис. 12.5, б).

Вырубка пластин магнитопровода производится штампами на прессах и является формообразующей операцией. При износе режущих кромок штампа на пластинах магнитопроводов появляются заусенцы, которые могут привести к замыканию отдельных пластин, и пакета в целом. В результате уменьшается коэффициент заполнения пакета, и возрастают потери, на вихревые токи. Зазор между матрицей и пуансоном штампа влияет на размер заусенцев. Например, для получения заусенцев не более 0,005 мм зазоры между пуансоном и матрицей должны быть менее 0,002 мм. Для повышения стойкости штампов матрицы изготавливают из твердого сплава. Для получения высокой производительности применяют штампы-автоматы, оснащенные устройствами для автоматического удаления отштампованных пластин.

Снятие заусенцев осуществляют шлифованием, вальцеванием, электрополированием, виброгалтовкой. Наиболее час- то заусенцы удаляют шлифованием. Пластину пропускают между вращающимися с разной частотой резиновым и абразивным кругом. При вальцевании пластины пропускают между двумя закаленными стальными валками. Заусенцы снимаются за счет их сминания и обламывания, В этом случае производится" также правка пластин. Удаление заусенцев электрополированием обеспечивает повышение магнитной проницаемости на 10—12% и снижение потерь на гистерезис на 10—15%, что связано с удалением по-

Технология изготовления магнитопроводов

верхностного слоя металла с краев пластин, где имеет место наклеп после штамповки. Удаление заусенцев в виброгалтовочных установках производят на частоте 100 Гц с амплитудой колебаний 4—6 мм в среде электрокорунда зернистостью 3-5 мкм.

Перспективным способом удаления заусенцев является ультразвуковой в абразивной среде с наложением статического давления. Пластины погружают в ванну с абразивной суспензией, в которой возбуждаются ультразвуковые колебания частотой 18 кГц. Повышенное статическое давление в ультразвуковой ванне создается сжатым воздухом или азотом (0,4— -0,5 МПа).

После резки, вырубки и удаления заусенцев пластины обезжиривают в бензине и ацетоне, чередуя обезжиривание в каждой жидкости с сушкой на воздухе. Хорошие результаты дает ультразвуковая очистка (промывка) пластин.

Правка пластин магнитопровода осуществляется для уст-ранения их деформации в результате штамповки. Пластины правят, пропуская через рихтующие вальцы, или на эксцентриковых прессах штампами с плоскими шлифованными рабочими частями. Обычно установка с рихтующими вальцами и зачищающим абразивным кругом (для снятия заусенцев) объединяется со штампом-автоматом в один автоматически действующий  агрегат. Перед отжигом пластины обезжиривают ацетоном или бензином, припудривают окисью магния или окисью алюминия, не допускающими снижения магнитных свойств и спекания пластин.

Отжиг. Пластины магнитопровода подвергают межоперационному и окончательному отжигу. Межоперационный отжиг осуществляют для повышения пластических свойств материала, а окончательный — для получения магнитных свойств, присущих данному материалу. Режимы отжига представлены в табл. 12.1 и 12.2. После окончательного отжига на контрольных образцах измеряют магнитную проницаемость, которая является критерием качества отжига. При значительном разбросе параметров производят повторный отжиг.

Изоляция пластин. Наиболее распространенными способами изоляции пластин являются оксидирование и фосфатирование, а также лакирование. Фосфатирование обеспечивает более высокие механические и электроизоляционные свойства, чем лакиробание и оксидирование. Прогрессивным является образование термостойкого изоляционного слоя на металлургическом заводе в процессе изготовления листового магнитного материала.

Сборка пакета состоит из набора пластин в пакет и их скрепления. Различают два способа набора пластин: вперекрышку и встык. Набор пластин осуществляется вручную или автоматически. Сборку встык применяют в том случае, когда необходимо иметь воздушный зазор в магнитопроводе, например, в дросселях. Зазор (0,05—0,10 им) регулируют количеством бумажных прокладок между пластинами. В ряде случаев для повышения коэффициента заполнения осуществляют обжатие пакета на прессе давлением 2—5 МПа, но при этом могут ухудшаться магнитные характеристики магнитопровода (возможно увеличение потерь на вихревые токи вследствие частичного разрушения изоляционных слоев). Собранный пакет скрепляют изолированными шпильками, болтами или обжимными скобами.

Таблица 12.2. Режимы окончательного отжига магнитопроводов

Материал

Среда

Режимы отжига;

магнитопровода

ОТЖИГА

Температура, К

Время

выдержки, ч

Скорость охлаждения, К/ч

Электротехнические стали

Вакуум 133·10-4 Па или водород

1373—1423

4-6

не более 50 (до 673 К)

Пермаллои 45Н, 50Н, 79НМ, 50НП

Вакуум 133·10-3 Па или водород

1373—1423

3—6

1

не более 200 (до 873 К) не менее 673 (от 873 до 473 К)

 80 НХС

1373—1423

3—6

не более 200 (до 673-773 К); не менее 400 -(от -673 да 7-73 К)"

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 18.08.10 | [ + ]   [ - ]  
Просмотров: 136
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.