Бесплатные рефераты


В мире
Календарь новостей
« Ноя.2017
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
  12345
6789101112
13141516171819
20212223242526
27282930   
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Программа сложной структуры с использованием меню

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ

кафедра вм

Курсовик

“Программа сложной структуры с использованием меню”

ВЫПОЛНИЛ:  Пикулин Е. Г.

принял:  Солодовников А. Д.

ã    мОСКВА  1996 год

                            ОГЛАВЛЕНИЕ.

1. ВИДЫ КОНТРОЛЯ ПРОГРАММ                                            

2. ЦЕЛИ, ПРИНЦИПЫ И ЭТАПЫ ТЕСТИРОВАНИЯ

3. СТРУКТУРНОЕ ТЕСТИРОВАНИЕ

4. СОВМЕСТНОЕ ТЕСТИРОВАНИЕ МОДУЛЕЙ

5. ФУНКЦИОНАЛЬНОЕ ТЕСТИРОВАНИЕ

6. ТЕСТИРОВАНИЕ ПРОГРАММНОГО КОМПЛЕКСА В ЦЕЛОМ

7. ОТЛАДКА ПРОГРАММ

    

                       ВИДЫ КОНТРОЛЯ ПРОГРАММ

Программный комплекс - это совокупность программных модулей, предназначенных для решения одной задачи и составляющих одно целое.

Основными разновидностями контроля программного обеспечения являются визуальный, статический  и динамический.

Визуальный контроль - это проверка программ “ за столом “ , без использования компьютера. На первом этапе визуального контроля осуществляется  чтение программы, причем особое внимание уделяется следующим ее элементам:

        комментариям и их соответствию тексту программы ;

        условиям в операторах условного выбора ( IF, CASE ) и цикла;

        сложным логическим выражениям; 

        возможности незавершения итерационных циклов   ( WHILE, REPEAT, LOOP ).

Второй этап визуального контроля - сквозной контроль программы

( ее ручная прокрутка на нескольких заранее подобранных простых тестах). Распространенное мнение , что более выгодным является перекладывание большей части работы по контролю программных средств на компьютере, ошибочно. Основной довод в пользу этого таков : при работе на компьютере главным образом совершенствуются навыки в использовании клавиатуры, в то время как программистская квалификация преобретается прежде всего за столом.

Статический контроль- это проверка программы по ее тексту           (без выполнения) с помощью инструментальных средств. Наиболее известной формой статического контроля является синтаксический контроль программы с помощью компилятора , при котором проверяется соответствие текста программы синтаксическим правилам языка программирования.

Сообщения компилятора обычно делятся на несколько групп в зависимости от уровня тяжести нарушения синтаксиса языка программирования :

                - информационные сообщения и предупреждения , при обнаружении которых компилятор, как правило, строит корректный объектный код и дальнейшая работа с программой (компоновка, выполнение) возможна (тем не менее сообщения этой группы также должны тщательно анализироваться, так как их появление также может свидетельствовать об ошибке в программе - например, из-за неверного понимания синтаксиса языка);

                - сообщения об ошибках, при обнаружении которых компилятор пытается их исправить и строит объектный код, но его корректность маловероятна и дальнейшая работа с ним скорее всего не возможна;

             

                                                    3

               -  сообщения о серьезных ошибках , при наличии которых  построенный компилятором объектный код заведомо некорректен и его дальнейшее использование невозможно;

               - сообщения об ошибках , обнаружение которых привело к прекращению синтаксического контроля и построения объектного кода .

Однако, практически любой компилятор пропускает некоторые виды синтаксических ошибок. Место обнаружения ошибки может находиться далеко по тексту программы от места истинной ошибки, а текст сообщения компилятора может не указывать на истинную причину ошибки. Одна синтаксическая ошибка может повлечь за собой генерацию компилятором нескольких сообщений об ошибках (например, ошибка в описании переменной приводит к появлению сообщения об ошибке в каждом операторе программы, использующем эту переменную).

Второй формой синтаксического контроля может быть контроль структурированности программ, то есть проверка выполнения соглашений и ограничений структурного программирования. Примером подобной проверки может быть выявление в тексте программы ситуаций, когда цикл образуется с помощью оператора безусловного перехода (использования оператора GOTO для перехода вверх по тексту программы ). Для проведения контроля структурированности могут быть созданы специальные инструментальные средства, а при их отсутствии эта форма статического контроля может совмещаться с визуальным контролем .

Третья форма статического контроля - контроль правдоподобия программы, то есть выявление в ее тексте конструкций, которые хотя и синтаксически корректны, но скорее всего содержат ошибку или свидетельствуют о ней. Основные неправдоподобные ситуации :

               - использование в программе неинициализированных переменных (то есть переменных, не получивших начального значения) ;

               - наличие в программе описаний элементов, переменных, процедур, меток, файлов,  в дальнейшем не используемых в ее тексте;

               - наличие в тексте программы фрагментов, никогда не выполняющихся;

               - наличие в тексте программы переменных, ни разу не используемых для чтения после присваивая им значений;

               - наличие в тексте программы заведомо бесконечных циклов ;

Даже если присутствие в тексте программы неправдоподобных конструкций не приводит к ее неправильной работе, исправление этого фрагмента повысит ясность и эффективность программы, т. е. благотворно скажется на ее качестве.

Для возможности проведения контроля правдоподобия в полном объеме также должны быть созданы специальные инструментальные средства, хотя ряд возможностей по контролю правдоподобия имеется в существующих  отладочных и обычных компиляторах.

                                                   4

Следует отметить, что создание инструментальных средств контроля структурированности и правдоподобия программ может быть существенно

упрощено при применении следующих принципов:

                  1) проведение этих дополнительных форм статического контроля после завершения компиляции и только для синтаксически корректных программ ;

                 2) максимальное использование результатов компиляции программы и, в частности, информации, включаемой в листинг компилятора;

                                                  

                3) вместо полного синтаксического разбора текста проверяемой программы построение для нее списка идентификаторов и списка операторов с указанием всех их необходимых признаков.

При отсутствии инструментальных средств контроля правдоподобия эта фаза статического контроля также может объединяться с визуальным контролем.

Четвертой формой статического контроля программ является их верификация, то есть аналитическое доказательство их корректности.

В интуитивном смысле под корректностью понимают свойства программы, свидетельствующие об отсутствии в ней ошибок, допущенных разработчиком на различных этапах проектирования ( спецификации, проектирование алгоритма и структур данных, кодирование ). Корректность самой программы по отношению к целям, поставленным перед ее разработкой ( то есть это относительное свойство ). Отличие понятия корректности и надежности программ в следующем  :

                надежность характеризует как программу, так и ее “окружение” ( качество аппаратуры, квалификацию пользователя и т.п. );

                говоря о надежности программы, обычно допускают определенную, хотя и малую, долю ошибок в ней и оценивают вероятность их появления.

 Надежность можно представить совокупностью следующих характеристик :

                1) целостность программного средства (способность его к защите от отказов);

                2) живучесть (способность к входному контролю данных и их проверки в ходе работы) ;

               3) завершенность (бездеффектность готового программного средства, характеристика качества его тестирования);

               4) работоспособность (способность программного средства к восстановлению своих возможностей поле сбоев).

Очевидно, что не всякая синтаксически правильная программа является корректной в указанном выше смысле, т. е. корректность характеризует семантические свойства программ.

                                                 5

 С учетом специфики появления ошибок в программах можно выделить две стороны понятия корректности :

                1) корректность как точное соответствие целям разработки программы (которые отражены в спецификации) при условии ее завершения или частичная корректность ;

                2) завершение программы , то есть достижение программой в процессе ее выполнения своей конечной точки.  

В зависимости от выполнения или невыполнения каждого из двух названных свойств программы различают шесть задач анализа корректности :

                1) доказательство частичной корректности ;

               2) доказательство частичной некорректности ;

               3) доказательство  завершения программы ;

               4) доказательство  незавершения программы ;

             5) доказательство  тотальной (полной ) корректности (то есть одновременное решение первой и третьей задач);

        6) доказательство  некорректности (решение второй или четвертой задачи).

Методы  доказательства частичной корректности программ как правило опираются на аксиоматический подход к формализации семантики языков программирования. В настоящее время известны аксиоматические семантики Паскаля, подмножества ПЛ/1 и некоторых других языков.

Аксиоматическая семантика языка программирования представляет собой совокупность  аксиом и правил вывода. С помощью аксиом задается семантика   простых операторов языка (присваивания, ввода - вывода, вызова процедур). С помощью правил вывода описывается семантика составных операторов или управляющих структур (последовательности, условного выбора, циклов). Среди этих правил вывода  надо отметить правило вывода для операторов цикла так как оно требует знания инварианта цикла (формулы, истинности которой не изменяется при любом прохождении цикла).

Построение инварианта для оператора цикла по его тексту является алгоритмически не разрешимой задачи, поэтому для описания семантики циклов требуется своего рода ”подсказка” от разработчика программы.

Наиболее известным из методов доказательства частичной корректности программ является метод индуктивных утверждений предложенный Флойдом и усовершенствованный Хоаром. Метод состоит из трех этапов.

Первый этап - получение аннотированной программы. На этом этапе для синтаксически правильной программы должны быть заданы утверждения на языке логики предикатов первого порядка :

                                                 6

входной предикат ;

                выходной предикат ;

                по одному утверждению для каждого цикла (эти утверждения задаются для входной точки цикла и должны характеризовать семантику вычислений в цикле).

Доказательство неистинности условий корректности свидетельствует о неправильности программы, или ее спецификации, или программы и спецификации.

Несмотря на достаточную сложность процесса верификации программы и на то, что даже успешно завершенная верификация не дает гарантий качества программы ( т.к. ошибка может содержаться и в верификации ), применение методов аналитического доказательства правильности очень полезно для уточнения смысла разрабатываемой программы, а знание этих методов благотворно сказывается на квалификации программиста.

Наконец, динамический контроль программы - это проверка правильности программы при ее выполнении на компьютере, т.е. тестирование.

   ЦЕЛИ , ПРИНЦИПЫ  И  ЭТАПЫ  ТЕСТИРОВАНИЯ .

Каждому программисту известно, сколько времени и сил уходит на отладку и тестирование программ. На этот этап приходится около 50% общей стоимости разработки программного обеспечения.

Но не каждый из разработчиков программных средств может верно определить цель тестирования. Нередко можно услышать, что тестирование - это процесс выполнения программы с целью обнаружения в ней ошибок. Но эта цель недостижима : ни какое самое тщательное тестирование не дает гарантии, что программа не содержит ошибок.

Другое определение тестирования ( у Г. Майерса )   тестирование - это процесс выполнения программы с целью обнаружения в ней ошибок. Такое определение цели стимулирует поиск ошибок в программах. Отсюда также ясно, что “удачным” тестом является такой, на котором выполнение программы завершилось с ошибкой. Напротив, “неудачным можно назвать тест, не позволивший выявить ошибку в программе.

Определение  Г. Майерса указывает на объективную трудность тестирования : это деструктивный ( т.е. обратный созидательному ) процесс. Поскольку программирование - процесс конструктивный, ясно, что большинству разработчиков программных средств сложно  “переключиться” при тестировании созданной ими продукции.

 

                                                 7

У Майерса сформулированы также основные принципы организации тестирования :

            1) необходимой частью каждого теста должно являться описание ожидаемых результатов работы программы, чтобы можно было быстро выяснить наличие или отсутствие ошибки в ней ;

            2) следует  по  возможности  избегать  тестирования программы ее автором, т.к. кроме уже указанной объективной сложности тестирования для программистов здесь присутствует и тот фактор, что обнаружение недостатков в своей деятельности противоречит человеческой психологии ( однако отладка программы эффективнее всего выполняется именно автором программы ) ;

                  3) по  тем  же  соображениям  организация - разработчик программного обеспечения не должна “единолично ” его тестировать ( должны существовать организации, специализирующиеся на тестировании программных средств ) ;

                  4) должны являться правилом доскональное изучение результатов каждого теста, чтобы не пропустить малозаметную на поверхностный взгляд ошибку в программе ;

                   5)  необходимо тщательно подбирать тест не только для правильных ( предусмотренных ) входных данных, но и для неправильных (непредусмотренных) ;

                   6) при анализе результатов кождого теста необходимо проверять, не делает ли программа того, что она не должна делать ; 

                      7) следует сохранять использованные тесты (для повышения эффективности повторного тестирования программы после ее модификации или установки у заказчика) ;

                            8) тестирования не должно планироваться исходя из предположения, что в программе не будут обнаружены ошибки (в частности, следует выделять для тестирования достаточные временные и материальные ресурсы) ;

                       9) следует учитывать так называемый “принцип скопления ошибок” : вероятность наличия не обнаруженных ошибок в некоторой части программы прямо пропорциональна  числу ошибок, уже обнаруженных в этой части ;

                             10) следует всегда помнить , что тестирование - творческий процесс, а не относиться к нему как к рутинному занятию.

Существует два основных вида тестирования : функциональное и структурное. При функциональном тестировании программа рассматривается как “черный ящик” (то есть ее текст не используется). Происходит проверка соответствия поведения программы ее внешней спецификации. Возможно ли при этом полное тестирование программы ? Очевидно , что критерием полноты тестирования в этом случае являлся бы перебор всех возможных значений входных данных, что невыполнимо .

8

Поскольку исчерпывающее функциональное тестирование невозможно, речь может идти о разработки методов, позволяющих подбирать тесты не “вслепую”, а с большой вероятностью обнаружения ошибок в программе.

При структурном тестировании программа рассматривается  как “белый ящик” (т.е. ее текст открыт для пользования ). Происходит проверка логики программы. Полным тестированием в этом случае будет такое, которое приведет к перебору всех возможных путей на графе передач управления программы (ее управляющем графе). Даже для средних по сложности программ числом таких путей может достигать десятков тысяч. Если ограничиться перебором только линейных не зависимых путей, то и в этом случае исчерпывающее структурное тестирование практически невозможно, т. к. неясно, как подбирать тесты , чтобы обеспечить “покрытие” всех таких путей. Поэтому при структурном тестировании необходимо использовать другие критерии его полноты, позволяющие достаточно просто контролировать их выполнение, но не дающие гарантии полной проверки логики программы.

Но даже если предположить, что удалось достичь полного структурного тестирования некоторой программы, в ней тем не менее могут содержаться ошибки, т.к.

                           1) программа может не соответствовать своей внешней спецификации, что в частности, может привести к тому, что в ее управляющем графе окажутся пропущенными некоторые необходимые пути ;

                2) не будут обнаружены ошибки, появление которых зависит от обрабатываемых данных (т.е. на одних исходных данных программа работает правильно, а на других - с ошибкой).

Таким образом, ни структурное, ни функциональное тестирование не может быть исчерпывающим. Рассмотрим подробнее основные этапы тестирования программных комплексов.

В тестирование многомодульных программных комплексов можно выделить четыре этапа :

               1) тестирование отдельных модулей ;

               2) совместное тестирование модулей ; 

               3) тестирование функций программного комплекса (т.е. поиск различий между разработанной программой и ее внешней спецификацией ) ;

       4) тестирование всего  комплекса  в целом (т.е. поиск несоответствия созданного программного продукта сформулированным ранее целям проектирования, отраженным обычно в техническом задании).

На первых двух этапах используются прежде всего методы структурного тестирования, т.к.

               на  последующих  этапах  тестирования   эти   методы использовать сложнее из-за больших размеров проверяемого программного обеспечения ;

                    последующие этапы тестирования ориентированы на обнаружение ошибок различного типа, которые не обязательно связаны с логикой программы.

При тестировании как отдельных модулей, так и их комплексов должны быть решены две задачи :

                     1) построение эффективного множества тестов ;

                     2) выбор способа комбинирования (сборки) модулей при создании трестируемого варианта программы .

                  СТРУКТУРНОЕ  ТЕСТИРОВАНИЕ .

Поскольку исчерпывающее структурное тестирование невозможно, необходимо выбрать такие критерии его полноты, которые допускали бы их простую проверку и облегчали бы целенаправленный подбор тестов.

Наиболее слабым из критериев полноты структурного тестирования является требование хотя бы однократного выполнения (покрытия) каждого оператора программы.

Более сильным критерием является так называемый критерий С1 : каждая ветвь алгоритма (каждый переход) должна быть пройдена (выполнена) хотя бы один раз. Для большинства языков программирования покрытие переходов обеспечивает и покрытие операторов, но , например, для программ на языке ПЛ/1 дополнительно к покрытию всех ветвей требуется всех дополнительных точек входа в процедуру (задаваемых операторами ENTRY) и всех ON - единиц.

Использование критерия покрытия условий может вызвать подбор тестов, обеспечивающих переход в программе, который пропускается при использовании критерия С1 (например, в программе на языке Паскаль, использующей конструкцию цикла WHILE  х  AND  y  DO... , применение критерия покрытия условий требует проверки обоих вариантов выхода из цикла : NOT  x  и NOT  y ).

 С другой стороны покрытие условий может не обеспечивать покрытия всех переходов. Например, конструкция IF A AND B THEN...  требует по критерию покрытия условий двух тестов (например, A=true, B=false и A=false, B=true ), при которых может не выполняться оператор, расположенный в then - ветви оператора  if.

Практически единственным средством, предоставляемым современными системами программирования, является возможность определения частоты выполнения различных операторов программы (ее профилизации). Но с помощью этого инструмента поддержки тестирования можно проверить выполнение только слабейшего из критериев полноты - покрытие всех операторов.

Правда, с помощью этого же инструмента можно проверить и выполнение критерия С1. Но для этого предварительно текст программы должен быть преобразован таким образом, чтобы все конструкции условного выбора (IF и CASE

                                                                10

или SWITCH ) содержали ветви ELSE или DEFAULT, хотя бы и пустые. В этом случае все ветви алгоритма , не выполнявшиеся на данном тесте будут “видимы” из таблицы частоты выполнения операторов преобразованной программы. 

Актуальной остается задача создания инструментальных средств, позволяющих :

                  1) накапливать информации о покрытых и непокрытых ветвях для всех использованных тестов ;

                 2) выделять разработчику еще не покрытые при тестировании участки программы, облегчая выбор следующих тестов ;

              3) поддерживать более мощные критерии полноты структурного тестирования.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

      Совместное тестирование модулей.

                                          

Известны два подхода к совместному тестированию модулей : пошаговое и монолитное тестирование.

При монолитном тестировании сначала по отдельности тестируются все модули программного комплекса, а затем все они объединяются в рабочую программу для комплексного тестирования.

При пошаговом тестировании каждый модуль для своего тестирования подключается к набору уже проверенных модулей.

В первом случае для автономного тестирования каждого модуля требуется модуль - драйвер ( то есть вспомогательный модуль, имитирующий вызов тестируемого модуля) и один или несколько модулей - заглушек ( то есть вспомогательных модулей, имитирующих работу модулей, вызываемых из тестируемого). При пошаговом тестировании модули проверяются не изолированно друг от друга, поэтому требуются либо только драйверы, либо только заглушки.

Программа сложной структуры с использованием меню
ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 20.08.10 | [ + ]   [ - ]  
Просмотров: 98
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.