Бесплатные рефераты


В мире
Календарь новостей
« Дек.2017»
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
    123
45678910
11121314151617
18192021222324
25262728293031
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Один метод построения полигональных изображений

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Один метод построения полигональных изображений

Василий Терешков 

Построение изображений трехмерных объектов при помощи компьютера – тема, которая издавна привлекала особое внимание программистов и разработчиков аппаратных средств. С появлением эффективных графических библиотек (Direct3D, OpenGL и т.п.) и специализированных видеокарт интерес к математическим основам машинной графики снизился, поскольку у программистов исчезла необходимость самостоятельно создавать алгоритмы построения изображений. В этом одна из сторон печальной тенденции превращения программирования из искусства в ремесло.

Все же немало есть и тех, кто захочет не только получить результат, но и узнать, что лежит между интерфейсом графической библиотеки и готовой картинкой на экране. Для них и предназначена эта статья, в которой мы постараемся изложить суть одного метода построения трехмерных изображений, быть может, не самого эффективного.

Терминология

Прежде поясним некоторые математические понятия, которыми будем пользоваться в дальнейшем.

Мировая система координат – в нашем случае пространственная прямоугольная система координат (СК), две оси которой (X и Y) направлены по сторонам экрана монитора, а третья – от наблюдателя.

Экранная система координат – СК в плоскости экрана, ее оси совпадают с осями X и Y мировой СК.

Система координат модели – СК, относительно которой в файле заданы координаты всех вершин модели, изображение которой строится.

Вектор – направленный отрезок, его положение будем задавать либо координатами начала и конца, либо их разностями (собственно координатами вектора). Длина (модуль) вектора рассчитывается как квадратный корень из суммы квадратов его координат – это следствие теоремы Пифагора. Скалярное произведение векторов – число p, определяемое следующим образом: Один метод построения полигональных изображенийилиОдин метод построения полигональных изображений, где |A| и |B| - длины векторов A и B, x, y, z – их координаты, t – угол между ними. Коллинеарные векторы – два или более вектора, лежащие на одной прямой или параллельных прямых. Компланарные векторы – три или более вектора, которые при отложении из одной точки оказываются лежащими в одной плоскости. Если векторы A, B, C компланарны, то вектор C можно разложить по векторам A и B, то есть C=aA+bB, где a и b – некоторые коэффициенты. Нормаль к вектору – вектор единичной длины, перпендикулярный данному. На плоскости координаты нормали к вектору P(x; y) определяются по формулам:

Один метод построения полигональных изображений

Определитель – алгебраическое выражение, записанное в особой форме. Мы будем использовать определители 3-го порядка:

Один метод построения полигональных изображений

Существует мнемоническое правило вычисления определителей 3-го порядка – так называемое правило Саррюса, с которым можно ознакомиться в специальной литературе.

Используемые данные и их представление

Возможно, вы обратили внимание на слово «полигональный» в заголовке статьи. Поясним его смысл. «Полигон» в переводе на русский язык означает «многоугольник», а «полигональный» – «составленный из многоугольников». В применении к машинной графике это означает, что для построения изображения произвольного тела сначала создается его модель – сложный многогранник, все грани которого представляют собой многоугольники, как правило, простейшие, - треугольники.

В файле с информацией о модели должны быть каким-либо образом заданы координаты всех вершин (их число может достигать нескольких тысяч) и порядок их соединения. Если предполагается наложение текстур, то каждой вершине должны быть приписаны еще два числа – текстурные координаты u, v. Их смысл в следующем. Текстура представляет собой плоское растровое изображение, которое должно быть наложено на пространственную модель без разрывов. Это предполагает неравномерную деформацию текстуры – ее сжатие и растяжение. Но одновременно требуется, чтобы текстура не «сползла», то есть во всех вершинах модели оказались строго определенные точки растра. Эти точки и задаются координатами u, v в системе координат, связанной с текстурой. Хорошей механической аналогией может послужить кусок резины, натягиваемый на каркас и прикрепляемый булавками в вершинах каркаса.

С технической точки зрения хранить все эти данные удобнее всего в двоичном файле, содержащем три массива:

//Информация о вершинах

struct TVertex

{

  float x; //координаты в СК модели

  float y;

  float z;

} Vertices[NUM_VERTICES];

//Информация о гранях

struct Ttriangle

{

  int i1; //номера вершин, составляющих грань, в массиве Vertices

  int i2;

  int i3;

  float u1; //текстурные координаты вершин

  float v1;

  float u2;

  float v2;

  float u3;

  float v3;

} Triangles[NUM_TRIANGLES];

//Текстура (256 цветов)

unsigned char Texture[TEXTURE_SIZE];

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 20.08.10 | [ + ]   [ - ]  
Просмотров: 139
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.