Бесплатные рефераты


В мире
Календарь новостей
« Дек.2017»
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
    123
45678910
11121314151617
18192021222324
25262728293031
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Моделирование системных элементов

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Математическое моделирование системных элементов

Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания".

Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов.

1.1. Три этапа математизации знаний

Современная методология науки выделяет три этапа математизации знаний: математическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории.

Первый этап - это математическая, чаще всего именно количественная обработка эмпирических (экспериментальных) данных. Это этап выявления и выделения чисто феноменологических функциональных взаимосвязей (корреляций) между входными сигналами (входами Моделирование системных элементов) и выходными реакциями (откликами Моделирование системных элементов) на уровне целостного объекта (явления, процесса), которые наблюдают в экспериментах с объектами-оригиналами Моделирование системных элементов. Данный этап математизации имеет место во всякой науке и может быть определён как этап первичной обработки её эмпирического материала.

Второй этап математизации знаний определим как модельный. На этом этапе не-которые объекты выделяются (рассматриваются) в качестве основных, базовых (фун-даментальных), а свойства (атрибуты), характеристики и параметры других объектов исследования объясняются и выводятся исходя из значений, определяемых первыми (назовем их оригиналами). Второй этап математизации характеризуется ломкой старых теоретических концепций, многочисленными попытками ввести новые, более глубокие и фундаментальные. Таким образом, на "модельном" этапе математизации, т.е. этапе математического моделирования, осуществляется попытка теоретического воспроизве-дения, "теоретической реконструкции" некоторого интересующего исследователя объек-та-оригинала в форме другого объекта - математической модели.

Третий этап - это этап относительно полной математической теории данного уровня организации материи в данной или рассматриваемой предметной области. Третий этап предполагает существование логически полной системы понятий и аксиоматики. Математическая теория даёт методологию и язык, пригодные для описания явлений, процессов и систем различного назначения и природы. Она даёт возможность преодолевать узость мышления, порождаемую специализацией.

1.2. Математическое моделирование и модель

Математическое моделирование - это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения - реакции

Моделирование системных элементов, в зависимости от параметров объекта-оригинала Моделирование системных элементов, входных воздействий Моделирование системных элементов, начальных и граничных условий, а также времени.

Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала Моделирование системных элементов, которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала Моделирование системных элементов с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж.Коэном.

Определение 2. Математическая модель - это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами ("грамматика" и "синтаксис" математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Таким образом, исходя из принципиально важного значения интерпретации в тех-нологии математического моделирования, рассмотрим ее более подробно.

 

1.3. Интерпретации в математическом моделировании

Интерпретация (от латинского "interpretatio" - разъяснение, толкование, истолкование) определяется как совокупность значений (смыслов), придаваемых каким-либо образом элементам некоторой системы (теории), например, формулам и отдельным символам. В математическом аспекте интерпретация - это экстраполяция исходных положений какой-либо формальной системы на какую-либо содержательную систему, исходные положения которой определяются независимо от формальной системы. Следовательно, можно утверждать, что интерпретация - это установление соответствия между некоторой формальной и содержательной системами. В тех случаях, когда формальная система оказывается применимой (интерпретируемой) к содержательной системе, т.е. установлено что между элементами формальной системы и элементами содержательной системы существует взаимно однозначное соответствие, все исходные положения формальной системы получают подтверждение в содержательной системе. Интерпретация считается полной, если каждому элементу формальной системы соответствует некоторый элемент (интерпретант) содержательной системы. Если указанное условие нарушается, имеет место частичная интерпретация.

При математическом моделировании в результате интерпретации задаются значения элементов математических выражений (символов, операций, формул) и целостных конструкций.

Основываясь на приведенных общих положениях, определим содержание интерпретации применительно к задаче математического моделирования.

Определение 3. Интерпретация в математическом моделировании - это информационный процесс преобразования абстрактного математического объекта (АМО) в конкретную математическую модель (ММ) конкретного объекта на основе отображения

непустого информационного множества данных и знаний, определяемого АМО и называемого областью интерпретации, в кообласть - информационное множество данных и знаний, определяемое предметной областью и объектом моделирования и называемое областью значений интерпретации.

Таким образом, интерпретацию следует рассматривать как один из основополагающих механизмов (инструментов) технологии математического (научного) моделирования.

Именно интерпретация, придавая смысл и значения элементам (компонентам) математического выражения, делает последнее математической моделью реального объекта.

1.4. Виды и уровни интерпретаций

Создание математической модели системного элемента - многоэтапный процесс. Основным фактором, определяющим этапы перехода от АМО к ММ, является интерпретация. Количество этапов и их содержание зависит от начального (исходного) информационного содержания интерпретируемого математического объекта - математического описания и требуемого конечного информационного содержания математического объекта - модели. Полный спектр этапов интерпретации, отражающий переход от АМО - описания к конкретной ММ, включает четыре вида интерпретаций: синтаксическую (структурную), семантическую(смысловую), качественную(численную) и количественную. В общем случае, каждый из перечисленных видов интерпретации может иметь многоуровневую реализацию. Рассмотрим более подробно перечисленные виды интерпретаций.

Cинтаксическая интерпретация

Синтаксическую интерпретацию будем рассматривать как отображение морфологической (структурной) организации исходного АМО в морфологическую организацию структуру заданного (или требуемого) АМО. Синтаксическая интерпретация может осуществляться как в рамках одного математического языка, так и различных математических языков.

При синтаксической интерпретации АМО возможны несколько вариантов задач реализации.

Задача 1. Пусть исходный АМО не структурирован, например, задан кортежем элементов. Требуется посредством синтаксической интерпретации сформировать морфологическую структуру математического выражения

Моделирование системных элементов (1)

Задача 2. Пусть АМО имеет некоторую исходную морфологическую структуру,

которая по тем или иным причинам не удовлетворяет требованиям исследователя (эксперта). Требуется посредством синтаксической интерпретации преобразовать в соответствии с целями и задачами моделирования исходную структуру StМоделирование системных элементовв адекватную требуемую StМоделирование системных элементов,т.е.

Моделирование системных элементов (2)

Задача 3. Пусть АМО имеет некоторую исходную морфологическую структуру StМоделирование системных элементов, удовлетворяющую общим принципам и требованиям исследователя с точки зрения её синтаксической организации. Требуется посредством синтаксической интерпретации конкретизировать АМО со структурой StМоделирование системных элементовдо уровня требований, определяемых целями и задачами моделирования

Моделирование системных элементов (3)

Таким образом, синтаксическая интерпретация математических объектов даёт возможность формировать морфологические структуры АМО, осуществлять отображение (транслировать) морфологические структуры АМО с одного математического языка на другой, конкретизировать или абстрагировать морфологические структурные представления АМО в рамках одного математического языка.

Семантическая интерпретация

Семантическая интерпретация предполагает задание смысла математических выражений, формул, конструкций, а также отдельных символов и знаков в терминах сферы, предметной области и объекта моделирования. Семантическая интерпретация даёт возможность сформировать по смысловым признакам однородные группы, виды, классы и типы объектов моделирования. В зависимости от уровней обобщения и абстрагирования или, наоборот, дифференциации или конкретизации, семантическая интерпретация представляется как многоуровневый, многоэтапный процесс.

Таким образом, семантическая интерпретация, задавая смысл абстрактному ма-

тематическому объекту, "переводит" последний в категорию математической модели с объекта-оригинала, в терминах которого и осуществляется такая интерпретация.

Качественная интерпретация

Интерпретация на качественном уровне предполагает существование качественных параметров и характеристик объекта-оригинала, в терминах (значениях) которых и производится интерпретация. При качественной интерпретации могут использоваться графические и числовые представления, посредством которых, например, интерпретируется режим функционирования объекта моделирования.

Количественная интерпретация

Количественная интерпретация осуществляется за счет включения в рассмотрение количественных целочисленных и рациональных величин, определяющих значение параметров, характеристик, показателей.

В результате количественной интерпретации появляется возможность из класса, группы или совокупности аналогичных математических объектов выделить один единственный, являющийся конкретной математической моделью конкретного объекта-оригинала.

Таким образом, в результате четырех видов интерпретаций - синтаксической, семантической, качественной и количественной происходит поэтапная трансформация

АМО, например, концептуальной метамодели (КММ) функциональной системы Моделирование системных элементов , в конкретную математическую модель (ММ) конкретного объекта моделирования.

Глава Концептуальное метамоделирование функционирования системного

элемента

2.1. Системный элемент как объект моделирования

Понятие "элемент" является одним из фундаментальных в общей теории систем (ОТС) - системологии. Оно происходит от латинского "Elementarius" и имеет смысл: начальный, простой, простейший, конечный, неделимый, лежащий в основе чего-либо.Впервые понятие "элемент" встречается, по-видимому, у Аристотеля в его работе "Метафизика".

Согласно ОТС, любая система (обозначим ее ), независимо от ее природы и назначения, а также от сознания субъекта (эксперта), существует только в структуриро-ванной форме. Структурированность выступает в качестве всеобщего свойства материи - ее атрибута. Именно свойство структурированности, а следовательно, и членимости целостной системы на части Моделирование системных элементов приводит к образованию компонент-подсистем Моделирование системных элементов и элементов Моделирование системных элементов

В целенаправленных действующих системах любой компонент Моделирование системных элементов целого характеризуется как поведением, так и строением. В тех случаях, когда при моделиро-вании рассматривается (исследуется) и поведение () и строение (), компонент Моделирование системных элементов определяется как подсистема системы . Если же рассмотрению подвергается только поведение компонента Моделирование системных элементов, то его определяют как элемент Моделирование системных элементов где Е - комплект элементов, выступающий носителем системы . Таким образом, сущность компонента "подсистема" дуальна. Для вышерасположенных компонент Моделирование системных элементов подсистема выступает как элемент, а для нижерасположенных - как система.

В системологии понятие "элемент" трактуется двояко - как абсолютная и как относительная категории. Абсолютное понятие элемента определяется физико-химическим подходом, относительное - системологическим.

Понятие абсолютного элемента Моделирование системных элементов связано с определением начального мини-мального компонента системы , т.е. такой ее части, которая сохраняет основные

свойства исходной целостной системы . При таком подходе, назовем его молекулярным, понятие "элемент" включает в себя и фиксирует существенные свойства целостной системы .

Понятие относительного элемента Моделирование системных элементов (Моделирование системных элементов) связано с уровнем познания

исходной целостной системы . При этом элемент Моделирование системных элементов рассматривается как системная

категория, зависящая от "взгляда" и "отношения" к нему субъекта (исследователя, эксперта). Такой подход к определению элемента Моделирование системных элементов назовем системологическим. При системологическом подходе компонент Моделирование системных элементов является элементом Моделирование системных элементов (Моделирование системных элементов) только в рамках данного рассмотрения на выделенном уровне анализа. Для системологического подхода понятие элемента, как относительной категории, может быть сформулировано следующим образом.

Определение 1. Элемент - это относительно самостоятельная часть системы,

рассматриваемая на данном уровне анализа как единое целое с интегральным поведением, направленным на реализацию присущей этому целому функции.

С учетом изложенного выше, рассмотрим элемент с точки зрения целостности.

 

2.2. Целенаправленность системного элемента

Фундаментальным свойством системного элемента Моделирование системных элементов является его целенаправленность и, как следствие, способность функционировать. Под функционированием принято принято понимать реализацию присущей элементу Моделирование системных элементов функции, т.е.

возможность получать некоторые результаты деятельности системного элемента Моделирование системных элементов, определяемые его целевым назначением.

Целенаправленно действующий системный элемент Моделирование системных элементов должен обладать, по крайней мере, тремя основными атрибутами:

- элемент Моделирование системных элементов выполняет одну или несколько функций,

- элемент Моделирование системных элементов обладает определенной логикой поведения,

- элемент Моделирование системных элементов используется в одном или нескольких контекстах.

Функция указывает на то, "что делает элемент Моделирование системных элементов".

Логика описывает внутренний алгоритм поведения элемента Моделирование системных элементов, т.е. определяет "как элемент Моделирование системных элементов реализует свою функцию".

Контекст определяет конкретные условия применения ( приложения ) элемента Моделирование системных элементов в тех или иных условиях, в той или иной среде.

Таким образом, принимая во внимание изложенное, можно определить содержательно что такое модель функционирования системного элемента Моделирование системных элементов.

Определение 4. Модель функционирования элемента ( МФЭ ) - это отражение на неко-тором языке совокупности действий, необходимых для достижения целей ( целевой функции ), т.е. результата Моделирование системных элементов функционирования элемента Моделирование системных элементов. МФЭ не учитывает строение, а также способы и средства реализации элемента. Такая модель устанавли-вает факт "Что делает элемент Моделирование системных элементов для достижения результата Моделирование системных элементов", определяемого его целевым назначением.

2.3. Целостность системного элемента

Целостность одно из основных свойств (атрибутов) системного элемента. Она отражает завершенную полноту его дискретного строения. Правильно сформированный

системный элемент Моделирование системных элементов (Моделирование системных элементов) характеризуется явно выраженной обособленностью (границами) и определенной степенью независимости от окружающей его среды. Относительная независимость системного элемента определяется (характеризуется) совокупностью факторов, которые назовем факторами целостности.

Факторы целостности Полная совокупность факторов целостности элемента Моделирование системных элементов определяется двумя группами, которые назовем внешние факторы целостности и внут-ренние.

Внешние факторы 1. Низкий уровень связности (число взаимосвязей) элемента Моделирование системных элементов с ок-ружающей его средой Моделирование системных элементов , т.е. минимальная внешняя связность элемента Моделирование системных элементов. Обозначив полную совокупность внешних связей элемента Моделирование системных элементов через Моделирование системных элементов, рассматриваемый фактор запишем как условие минимизации: Моделирование системных элементов Min.

2. Низкий уровень взаимодействия Моделирование системных элементов элемента Моделирование системных элементов с окружающей его средой

Моделирование системных элементов,т.е. слабое взаимодействие, определяемое минимальной совокупной интенсивностью обмена сигналами Моделирование системных элементов Min.

Внутренние факторы 1. Высокая степень связности друг с другом частей, из которых состоит элемент Моделирование системных элементов, т.е. суммарная внутренняя связность Моделирование системных элементов максимальна Моделирование системных элементовMax.

2. Высокая интенсивность Моделирование системных элементов взаимодействия частей, из которых состоит элемент Моделирование системных элементов. Иными словами, имеет место сильное внутреннее взаимодействие Моделирование системных элементовMax.

Оценка целостности элемента Перечисленные выше факторы могут быть использованы для оценки целостности системного элемента Моделирование системных элементов. Такая оценка, в определенной мере, характеризует степень "прочности" элемента по отношению к окружающей его

среде Моделирование системных элементов.

Введем понятие "прочность" как показатель внутренней целостности элемента и

определим его через суммарную композицию показателей взаимосвязей Моделирование системных элементов и взаимодействий Моделирование системных элементов всех частей, из которых состоит элемент Моделирование системных элементов. Прочность элемента при

этом определяется выражением

Моделирование системных элементов (1)

Для обобщенной оценки внешних взаимосвязей Моделирование системных элементов и взаимодействий Моделирование системных элементов элемента

Моделирование системных элементов с окружающей его средой Моделирование системных элементов введем показатель "сцепленности" и определим его как композицию показателей Моделирование системных элементов и Моделирование системных элементов, т.е.

Моделирование системных элементов (2)

Полученные показатели прочности (1) и сцепленности (2) используем для оценки

целостности Моделирование системных элементов элемента Моделирование системных элементов. Такая оценка определяется отношением вида

Моделирование системных элементов (3)

т.е. как отношение прочности Моделирование системных элементов элемента Моделирование системных элементов к его сцепленности Моделирование системных элементов со средой Моделирование системных элементов.

С учетом (1) и (2) выражение (3) принимает вид

Моделирование системных элементов (4)

Уровни целостности элемента Анализ выражений (3) и (4) дает возможность ранжи-ровать элементы Моделирование системных элементовпо уровням целостности и качественно определить их устойчи-вость по отношению к окружающей среде.

Случай 1. Если значение показателя прочности Моделирование системных элементов элемента Моделирование системных элементов превосходит значение показателя сцепленности Моделирование системных элементов элемента Моделирование системных элементов с его средой Моделирование системных элементов, т.е. Моделирование системных элементов > Моделирование системных элементов, а как следствие и Моделирование системных элементов > 1, то элемент Моделирование системных элементов по своим целостным свойствам устойчив. В рассматриваемом случае имеет место супераддитивная целостность.

Случай 2. Пусть значения показателей прочности Моделирование системных элементов и сцепленности Моделирование системных элементов равны,

т.е. Моделирование системных элементов = Моделирование системных элементов. В этом случае показатель целостности Моделирование системных элементов = 1. Тогда элемент Моделирование системных элементов по своим целостным свойствам находится на грани устойчивости. Такой уровень целостности элемента Моделирование системных элементов определим как аддитивная целостность.

Случай 3. Наконец, пусть значения показателя прочности Моделирование системных элементов элемента Моделирование системных элементов ниже значений показателя сцепленности Моделирование системных элементов элемента Моделирование системных элементов с его средой Моделирование системных элементов. В рассматриваемом случае условия записываются в виде Моделирование системных элементов < Моделирование системных элементов и Моделирование системных элементов < 1. При этом элемент Моделирование системных элементов по своим целостным свойствам не устойчив к интегральному вовлечению (растворению) в окружающей среде Моделирование системных элементов. Рассматриваемый уровень целостности элемента Моделирование системных элементов определим

как субаддитивная целостность.

Таким образом, введенный показатель Моделирование системных элементов может использоваться как критерий

оценки качества целостных свойств элемента Моделирование системных элементов, а также для сравнения раэличных элементов Моделирование системных элементов ( = 1, 2, ... , N) по критерию целостности.

 

2.4. Метод концептуального метамоделирования

Концептуальное метамоделирование ( КММ ) основано на использовании индуктивно-дедуктивного подхода. Создание КММ осуществляется на основе индуктивного подхода ( от конкретного к абстрактному, от частного к общему ) посредством обобщения, концептуализации и формализации.

Использование КММ предполагает переходы от общего к частному, от абстрактного к конкретному на основе интерпретаций.

КММ функционирования системного элемента Моделирование системных элементов предполагает описание динамики поведения на заданном уровне абстракции с точки зрения его взаимодействия с окружающей средой, т.е. внешнего поведения. Математическое описание такого элемента должно отражать последовательность причинно-следственных связей типа "вход - выход" с заданной временной направленностью из прошлого в будущее. КММ функционирования системного элемента Моделирование системных элементов должна учитывать базовые концепции и существенные факторы, к числу которых, в первую очередь, следует отнести следующие.

1. Элемент Моделирование системных элементов, как компонент системы Моделирование системных элементов, связан и взаимодействует с другими компонентами этой системы.

2. Компоненты Моделирование системных элементов системы Моделирование системных элементов воздействуют на элемент Моделирование системных элементов посредством входных сигналов, в общем случае, обозначаемых векторным множеством Моделирование системных элементов.

3. Элемент Моделирование системных элементов может выдавать в окружающую его среду Моделирование системных элементов выходные сигна-лы, обозначаемые векторным множеством Моделирование системных элементов.

4. Функционирование системного элемента Моделирование системных элементов ( Моделирование системных элементов ) происходит во времени с заданной временной направленностью от прошлого к будущему: Моделирование системных элементов где Моделирование системных элементов

5. Процесс функционирования элемента Моделирование системных элементов представляется в форме отображения Моделирование системных элементов входного векторного множества Моделирование системных элементов в выходное - Моделирование системных элементов, т.е. по схеме "вход - выход" и представляется записью вида

Моделирование системных элементов.

6. Структура и свойства отображения Моделирование системных элементов при моделировании на основе метода прямых аналогий определяется внутренними свойствами элемента Моделирование системных элементов, во всех остальных случаях - инвариантны и связаны феноменологически.

7. Совокупность существенных внутренних свойств элемента Моделирование системных элементов, представ-ляется в модели "срезом" их значений для фиксированного момента времени Моделирование системных элементов, при

условии фиксированного "среза" значений входных воздействий Моделирование системных элементов и определяется как внутреннее состояние Моделирование системных элементов элемента Моделирование системных элементов.

8. Внутренние свойства элемента Моделирование системных элементов характеризуются вектором параметров

Моделирование системных элементов, которые назовем функциональными ( - параметры ).

Концептуальное математическое описание системного элемента Моделирование системных элементов ( Моделирование системных элементов )

с учетом изложенных выше положений, представим кортежем

Моделирование системных элементов . ( 1 )

Такое описание определим как концептуальную метамодель - КММ функционирования системного элемента Моделирование системных элементов.

2.5. Стратифицированный анализ и описание КММ системного элемента

Концептуальные метамодели элемента, основанные на записи ( 1 ), могут образовывать некоторые иерархии. Уровни таких иерархий определяются степенью ( этапами ) конкретизации свойств элемента. Ранжирование КММ ( 1 ) по шкале "Абстрактное - Конкретное" на основе метода стратификации, следовательно, приводит к иерархической дедуктивной системе концептуальных метамоделей. Такая система может быть использована для математического моделирования конкретных элементов как некоторый исходный базовый инвариант, интерпретируемый в конкретную математическую модель.

В зависимости от степени конкретизации, сформируем дедуктивную систему, вклю-чающую следующие уровни КММ элемента Моделирование системных элементов:

КММ элемента Моделирование системных элементов на теоретико-системном уровне ( ТСУ );

КММ элемента Моделирование системных элементов на уровне непараметрической статики ( УНС );

КММ элемента Моделирование системных элементов на уровне параметрической статики ( УПС );

КММ элемента Моделирование системных элементов на уровне непараметрической динамики ( УНД );

КММ элемента Моделирование системных элементов на уровне параметрической динамики ( УПД ).

Рассмотрим более подробно КММ на каждом из перечисленных уровней.

КММ теоретико-системного уровня

Наиболее общую и абстрактную форму описания функционирования системного

элемента Моделирование системных элементов дает концептуальная метамодель теоретико-системного уровня ( ТСУ ). Это описание включает векторное множество входных воздействий на элемент Моделирование системных элементов

Моделирование системных элементов

и векторное множество выходных реакций ( откликов ) элемента Моделирование системных элементов

Моделирование системных элементов.

Кроме того, на рассматриваемом уровне абстракции учитывается факт связности векторного множества Моделирование системных элементов с соответствующим векторным множеством Моделирование системных элементов посредством отображения "". Однако, отображение "" не указывает каким образом рассматриваемые множества связаны.

Таким образом, КММ теоретико-системного уровня задаются тройкой

Моделирование системных элементов. ( 2 )

 

КММ уровня непараметрической статики

Второй уровень представления КММ включает в рассмотрение отображение Моделирование системных элементов, определяющее правила преобразования входов Моделирование системных элементов в выходы Моделирование системных элементов, т.е. что необходимо сделать, чтобы при условии Моделирование системных элементов получить Моделирование системных элементов, адекватное целевому функционированию элемента Моделирование системных элементов. В общем случае Моделирование системных элементов - отображение может быть представлено скалярной или векторной функцией, а также функционалом или оператором. Концептуальная метамодель уровня непараметрической статики, следовательно, представляется кортежем вида

Моделирование системных элементов. ( 3 )

Раскрытие структуры преобразования вида Моделирование системных элементов является основной задачей КММ уровня Моделирование системных элементов . Рассмотрим в качестве иллюстрации функциональное описание элемента Моделирование системных элементов, представленное скалярной функцией Моделирование системных элементов, причем: Моделирование системных элементов.

Функционирование элемента Моделирование системных элементов ( Моделирование системных элементов ) на УНС описывается как отображение Моделирование системных элементов. Это отображение называется функцией, если оно однозначно. Условия однозначности определяются следующим образом. Пусть заданы пары значений

сигналов "вход - выход":

Моделирование системных элементов ( 4 )

 

Если из условия ( Моделирование системных элементов ), следует, что ( Моделирование системных элементов ), то отображение Моделирование системных элементов однозначно. Значение величины Моделирование системных элементов в любой из пар Моделирование системных элементов называется функцией от данного Моделирование системных элементов . Общий вид записи функции Моделирование системных элементов позволяет дать формальное

определение функции элемента Моделирование системных элементов в скалярной форме представления

Моделирование системных элементов ( 5 )

Таким образом, КММ ( 3 ) проинтерпретирована в КММ того же уровня, но в скалярной форме функционального представления. Отметим, что богатство концептуальных метамоделей Моделирование системных элементов функционирования системного элемента Моделирование системных элементов ( Моделирование системных элементов ) на уровне непараметрической статики определяется многообразием ее интерпретаций на математическом, логическом или логико-математическом языках описания ( представления )

Моделирование системных элементов - отображения.

 

КММ уровни параметрической статики

Дальнейшая конкретизация КММ функционирования системного элемента Моделирование системных элементов

осуществляется за счет включения в рассмотрение функциональных параметров Моделирование системных элементов, определяющих статические режимы. Для элемента Моделирование системных элементов рассматриваются три группы параметров

Моделирование системных элементов ( 6 )

где Моделирование системных элементов - совокупность параметров { Моделирование системных элементов } входных воздействий Моделирование системных элементов

Моделирование системных элементов - совокупность параметров { Моделирование системных элементов } выходных реакций ( откликов ) Моделирование системных элементов

Моделирование системных элементов - совокупность параметров { Моделирование системных элементов } отображения Моделирование системных элементов.

Перечни ( номенклатура ) параметров Моделирование системных элементов и их значений определяются для каждого типа конкретной модели Моделирование системных элементов . Для Моделирование системных элементов - отображения, по аналогии со структурными моде- лями, вводится понятие конфигурации. С учетом параметрического описания и интерпретаций КММ задается четверкой

Моделирование системных элементов ( 7 )

КММ уровня непараметрической динамики

Следующий, четвертый уровень конкретизации КММ функционирования системного элемента Моделирование системных элементов определяется учетом в модели его динамических свойств. Динамика элемента Моделирование системных элементов рассматривается в нескольких аспектах. Первый аспект характеризуется реакцией элемента Моделирование системных элементов на динамику изменения входных воздействий Моделирование системных элементов

при неизменном отображении Моделирование системных элементов, т.е. когда Моделирование системных элементов - скалярная или векторная функция. Второй аспект определяется реакцией элемента Моделирование системных элементов на входные ( статические Моделирование системных элементов или динамические Моделирование системных элементов ) воздействия при времязависимом отображении Моделирование системных элементов, т.е. когда Моделирование системных элементов -

функционал или оператор, зависящий от времени Моделирование системных элементов.

При изложенных условиях КММ рассматриваемого уровня абстракции представляется кортежем, включающем следующие четыре компоненты

Моделирование системных элементов ( 8 )

Отметим, что на данном уровне представления КММ время Моделирование системных элементов указывает на факт

наличия динамических свойств, но не характеризует их конкретно.

 

КММ уровня параметрической динамики

Последний - пятый уровень дедуктивного представления КММ функционирования системного элемента Моделирование системных элементов, определяемый как уровень параметрической динамики, включает все рассмотренные ранее аспекты модели, представляемые кортежем ( 1 )

Моделирование системных элементов.

В КММ рассматриваемого уровня выполняются условия концептуальной полноты представления функциональных свойств элемента Моделирование системных элементов. Интерпретация та- кой модели на семантическом, синтаксическом, качественном и количественном уровнях дает возможность порождать ( генерировать ) любые конкретные математические модели функционирования системного элемента.

Отметим, что выражения ( 1 ), ( 2 ), ( 3 ), ( 7 ) и ( 8 ) могут быть представлены в форме традиционных аналитических зависимостей вида

Моделирование системных элементов ( 9 )

Выводы

Таким образом, концептуальное метамоделирование функционирования системного элемента Моделирование системных элементов на основе дедуктивного подхода приводит к пятиуровневой иерархии моделей, представленной на рис. .

Практическое использование представленных выше КММ для моделирования функций системных элементов Моделирование системных элементов осуществляется посредством их ретрансляции в тер-минах выбранного математического языка и последующей интерпретации на четырех перечисленных выше уровнях конкретизации.

 

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 20.08.10 | [ + ]   [ - ]  
Просмотров: 122
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.