Бесплатные рефераты


В мире
Календарь новостей
« Авг.2018
Пн.Вт.Ср.Чт.Пт.Сб.Вс.
  12345
6789101112
13141516171819
20212223242526
2728293031  
ВНИМАНИЕ!!!
УВАЖАЕМЫЕ ПОЛЬЗОВАТЕЛИ!!!
Сайт поменял владельца и на нём грядут большие перемены.
Убедительная просьба не пользоваться покупкой рефератов через смс.
ДАННЫЙ СЕРВИС БОЛЬШЕ НЕ РАБОТАЕТ
Стоит вопрос об его удалении, дабы сделать рефераты бесплатными. Извините за неудобство и спасибо за понимание
Поиск реферата

Реферат, курсовая, контрольная, доклад на тему: Интересные примеры в метрических пространствах

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Интересные примеры в метрических пространствах

1. В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром e, то вершины этих кубиков будут образовывать конечную Интересные примеры в метрических пространствах-сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.

Единичная сфера S в пространстве l2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:

е1=(1, 0, 0, ..., 0, 0, ...),

е2=(0, 1, 0, ..., 0, 0, ...),

…………………………,

еn=(0, 0, 0, ..., 1, 0, ...),

………………………….

Расстояние между любыми двумя точками еn и ем (n¹m) равно Ö2. Поэтому последовательность {еi} и любая ее подпоследовательность не сходятся. Отсюда в S не может быть конечной e-сети ни при каком e<Ö2/2.

Рассмотрим в l2 множество П точек

x=(x1, x2, ¼, xn, ...),

удовлетворяющих условиям:

| x1|£1, | x2|£1/2, ¼,| xn|£1/2n-1, ...

Это множество называется фундаментальным параллепипедом («гильбертовым кирпичем») пространства l2. Оно представляет собой пример бесконечномерного вполне ограниченного множества. Для доказательства его полной ограниченности поступим следующим образом.

Пусть e>0 задано. Выберем n так, что 1/2n-1

из П сопоставим точку x*=(x1, x2, ¼, xn, 0, 0, ...)

из того же множества. При этом

r(x,x*)=Интересные примеры в метрических пространствах£Интересные примеры в метрических пространствах<1/2n-1

Множество П* точек вида x*=(x1, x2, ¼, xn, 0, 0, ...) из П вполне ограничено (как ограниченное множество в n-мерном пространстве). Выберем в П* конечную e/2-сеть. Она будет в то же время e-сетью во всем П. Докажем это.

Доказательство: для "e>0, выберем n так, что 1/2n-1

"xÎП: x=(x1, x2, ¼, xn, ...) сопоставим

x*=(x1, x2, ¼, xn, 0, 0, ...) и x*ÎП. При этом r(x,x*)

Тогда: r(x,x**)£r(x,x*)+r(x*,x**)

Множество П* содержит точки вида x*=(x1, x2, ¼, xn, 0, 0, ...), в этом множестве выберем конечную e/2-сеть. Она будет e-сетью в пространстве П, так как r(x,x**)

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.monax.ru/


ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо А можно заказать оригинальный реферат
Опубликовано: 18.08.10 | [ + ]   [ - ]  
Просмотров: 100
Загрузок: 0
Рекомендуем
{dnmbottom}
БАНК РЕФЕРАТОВ содержит более 70 000 рефератов, курсовых, контрольных работ, сочинений и шпаргалок.