Сущность «черных дыр»

Теоретическое предвидение существования во Вселенной черных дыр – одно из самых замечательных достижений теоретической астрофизики в 20 в.

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Содержание

Введение 3
1. Сущность «черных дыр» 4
2. Движение черных дыр 9
3. Размеры черных дыр 12
4. Обнаружение «черных дыр» 13
Заключение 17
Список литературы 18

Введение

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

Теоретическое предвидение существования во Вселенной черных дыр – одно из самых замечательных достижений теоретической астрофизики в 20 в. Хотя отдельные идеи, приближавшие к понятию черной дыры, высказывались еще даже в рамках ньютоновской физики в 18 в. Тем не менее первая теоретическая модель черной дыры была построена в 1916 г. К. Шварцшильдом всего через несколько месяцев после опубликования А. Эйнштейном уравнений гравитационного поля в ОТО. В процессе поиска точных решений уравнений гравитационного поля Шварцшильд пришел к описанию геометрии пространства - времени вблизи идеальной черной дыры. Это была простейшая модель сферически - симметричной черной дыры, характеризующейся только массой.
Однако в целом в первой половине 20 в. интерес к моделированию черных дыр носил исключительно абстрактно – теоретический характер и не связывался с некими реальными объектами в Космосе. Следующий кардинальный шаг бал сделан в 1965г., когда группой физиков и астрофизиков была построена сложная модель черной дыры с массой, зарядом и моментом количества движения. Новый прорыв связан с созданием теорий, описывающих взаимодействие черной дыры и физического вакуума и появляющиеся при этом необычные свойства черных дыр, в частности их «испарение»
Целью данной работы является рассмотрение процесса обнаружения «черных дыр».
1. Сущность «черных дыр»

Сильное гравитационное поле черной дыры должно вызывать бурное излучение электромагнитных волн при попадании в это поле газа. Газ образует закручивающийся вокруг черной дыры быстро вращающейся уплотняющейся диск. При этом кинетическая энергия его частиц, разгоняемых силой тяготения черной дыры, частично переходит в рентгеновское излучение, по которому черная дыра может быть обнаружена. Так, в 1972-1973 гг. было получено доказательство реального существования черных дыр, когда выяснилось, что рентгеновский источник Лебедь Х-1 – это тесная двойная звездная система, в которой вещество из звезды гиганта (25 масс Солнца) перетекает к черной дыре (массой около 10 масс Солнца), генерируя мощный поток рентгеновского излучения.
В настоящее время существует уже более 10 кандидатов в черные дыры в тесных двойных системах и несколько десятков кандидатов в сверхмассивные черные дыры в ядрах галактик и в квазарах. Совсем недавно исследование движения звезд, сосредоточенных в центре нашей Галактики, показало, что одна из них, двигаясь по орбите вокруг центра Галактике на расстоянии, всего в 3 раза превышающем расстояние от Солнца до Плутона, имеет немыслимую для других для других звезд скорость – 5000 км/с, а период её обращения 15,2 года. Такое быстрое движение по орбите может быть объяснено только тем, что в нашей Галактики находится массивный (3,7 млн. масс Солнца) и сверхкомпактный объект. А с точки зрения современных представлений, таким объектом может быть только черная дыра.
Таким образом, черная дыра – область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость (параболическая скорость) для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь – ни излучение, ни частицы, ибо в природе ничто не может двигаться со скоростью, большей скорости света. Границу области, за которую ничто не выходит, даже свет, называют горизонтом черной дыры.
Для того чтобы поле тяготения смогло «запереть» излучение и вещество, создающая это поле масса звезды должна сжаться до объёма, радиус которого меньше гравитационного радиуса r = 2GM/c * c, где G – гравитационная постоянная; с – скорость света; М – масса звезды. Гравитационный радиус чрезвычайно мал даже для больших масс (например, для Солнца r ≈ 3 км, а для земли всего 0,8 см.). звезда с массой, равной массе Солнца, всего лишь за тысячную долю секунды превратится из обычной звезды в черную дыру. А если масса равна массе миллиарда звезд (её горизонт равен 2,8 световых часа), то такой процесс займет несколько дней.
Свойства черной дыры крайне необычны. Особый интерес вызывает возможность гравитационного захвата черной дырой тел, прилетающих из бесконечности. Если скорость тела вдали от черной дыры много меньше световой и траектория его движения подойдет близко к окружности с R = 2r, то тело совершит много оборотов вокруг черной дыры, прежде чем снова улетит в космос. Если же тело подойдет вплотную к указанной окружности, то его орбита будет неограниченно навиваться на окружность, тело будет гравитационно захваченным черной дырой и уже никогда не улетит в космос. Если же тело подлетит еще ближе к черной дыре, то после нескольких оборотов, или даже не успев сделать ни одного оборота, оно упадет в черную дыру.
Необычным свойством черной дыры является фундаментальное замедление времени. Представим себе двух наблюдателей: одного на поверхности коллапсирующей звезды, а другого далеко от нее. Предположим, что первый через равные промежутки времени посылает (радио- или световые) сигналы второму, информируя его о происходящем. По мере приближения первого наблюдателя к гравитационному радиусу сигналы, которые он посылает через равные интервалы времени, будут достигать другого наблюдателя через все более длительные промежутки времени. Если первый наблюдатель передаст последний сигнал как раз перед тем, как звезда достигнет гравитационного радиуса, то сигналу потребуется почти бесконечное время для того, чтобы прийти к удаленному наблюдателю. Другими словами, второй наблюдатель по сути никогда не увидит пересечение первым наблюдателем горизонта черной дыры. Если же наблюдатель послал сигнал после того, как достиг гравитационного радиуса, напарник некогда не примет его, потому что сигнал никогда не покинет звезду. Оказавшись внутри черной дыры, наблюдатель не может вернуться к поверхности. Он не может даже приостановиться в том месте, где оказался. Он «попадает в область бесконечной плотности, где время кончается». Когда фотоны либо частицы уходят за гравитационный радиус, они просто исчезают.
В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.
Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.
Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус rg"), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом rg < 2GM/c2, перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра. Несложно рассчитать, что Солнце (его масса 2.1033 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 1016 г/см3. Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра. Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла. Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл ( его решение обращается в бесконечность) при r = 0 и r = rg. Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом rg, образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем). Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее". И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца. 2. Движение черных дыр Черная дыра так сильно искривляет пространство, что как бы отсекает себя от Вселенной. Она может буквально исчезнуть из Вселенной. Возникает вопрос – куда? Математический анализ дает несколько решений. Особенно интересно одном из них: черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной Вселенной. Таким образом, воображаемый космический путешественник мог бы использовать черную дыру для передвижения в пространстве и времени нашей Вселенной, и даже проникновения в другую Вселенную. Правда, в реальности все оказывается намного сложнее. Есть ли у человека шансы сохраниться во времени его падения в черную дыру? Разочаруем любителей фантастических путешествий в другие вселенные. Во время такого свободного падения тело попросту будет разорвано грандиозными силами тяготения: если, допустим, оно попадает ногами вниз, то ноги окажутся ближе к черной дыре, чем голова, и будут двигаться быстрее – человек вытянется в тонкую нить длиной сотни километров. Существует еще много других серьезных и, по существу, непреодолимых препятствий для подобного путешествия. Например, у поверхности черной дыры свет (потоки фотонов) теряет энергию и испытывает красное смещение. А попадая под горизонт черной дыры, свет, наоборот, приобретает грандиозную энергию и испытывает фиолетовое смещение; здесь накапливается так называемый фиолетовый слой фотонов. Попадающего под горизонт черной дыры воображаемого путешественника ждет сильнейшая вспышка рентгеновских и гамма – лучей, губительная для всего губительного. И т.д. Что же происходит, когда черная дыра переходит в другую часть Вселенной или проникает в иную вселенную? Рождение черной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства – времени происходит нечто необычное – пространство и время меняется ролями. То, что во внешней Вселенной связывается с расстоянием, под горизонтом черной дыры ведет себя подобно времени, а то, что в нашей Вселенной характеризуется временем, в черной дыре ведет себя как пространство. Теоретически коллапс должен завершиться образованием сингулярности, т.е. должен продолжаться до тех пор, пока черная дыра не станет нулевых размеров и бесконечной плотности (хотя на самом деле речь должна идти не о бесконечности, а о каких – то очень больших, но конечных величинах). Во всяком случае, момент сингулярности – это, возможно, момент перехода в другие точки в прошлом или будущем нашей Вселенной. Много вопросов возникает и вокруг исторической судьбы черных дыр. Долгое время модели черных дыр в теоретической астрофизике создавались на основе представления, что черная дыра характеризуется исключительно тремя параметрами – массой, зарядом и моментом количества движения; все остальные свойства, присущие звездам (плотность, химический состав, давление и др.), здесь теряются. Дальнейшее изучение свойств черных дыр показало, что в некоторых случаях они могут «испаряться». Этот «механизм» связан с тем, что в сильное поле тяготения черной дыры вакуум неустойчив и может рождать частицы (фотоны, нейтрино и др.), которые, улетая, уносят энергию черной дыры. Вследствие этого черная дыра теряет энергию, уменьшается ее масса и размеры. Черные дыры испаряются за счет испускания частиц и излучения, но не из самой черной дыры, а из того пространства, которое находиться перед горизонтом черной дыры. Причем чем меньше черная дыра по массе, тем быстрее она испаряется. Особенно интенсивные потери энергии свойственны вращающимся черным дырам, обладающим вихревым гравитационным полем, которое создает вокруг черной дыры эргосферу – особую область, которую можно посещать с возвратом назад в свою Вселенную. Если в эргосферу попадает частица с определенной энергией и распадается в эргосфере на две части, одна из которых поглощается черной дырой, а вторая выбрасывается из черной дыры, то энергия выброшенной части будет намного больше энергии исходной частицы перед её попаданием в эргосферу. При этом энергия вращающейся черной дыры уменьшается. Кроме того, в эргосфере интенсивнее, чем в невращающейся черной дыре, протекают процессы квантового рождения частиц и античастиц из неустойчивого физического вакуума. Рожденные таким образом частицы, улетая из эргосферы, уносят с собой часть энергии черной дыры. Таким образом, черная дыра оказывается достаточно динамичным физическим объектом. С одной стороны, существуют процессы, которые приводят к возрастанию энергии – за счет падения на них газа, излучения, в том числе реликтового, и др. С другой стороны, за счет квантового испарения черная дыра постепенно теряет свою массу и энергию, испаряется. Потому для больших черных дыр квантовые процессы потери энергии и массы совершено ничтожны. Но их значение возрастает с уменьшением массы черной дыры. А размеры черных дыр могут быть различными: от массы галактики до песчинки. Продолжительность жизни черной дыры пропорциональна кубу ее радиуса. Это значит, что массивные черные дыры, образовавшиеся на ранних стадиях эволюции Вселенной, и сейчас существуют, причем, возможно, даже в пределах Солнечной системы. Их пытаются обнаружить с помощью гамма – телескопов. А маломассивные черные дыры, теряя массу, разогреваются и излучают еще сильнее. В конце концов они должны взорваться и, по – видимому, полностью исчезнуть, породив мощную вспышку жесткого гамма – излучения. 3. Размеры черных дыр Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 108 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды. По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (109) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4.106±10% массы Солнца. Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 1014 г и радиусом порядка 10-12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю? Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть. 4. Обнаружение «черных дыр» Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру. 1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу. 2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра. 3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.). И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку. Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца. Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать. Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях. Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E, уменьшит свою энергию, а с энергией E - увеличит. Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6.10-8 Mс/M кельвинов, где Mс - масса Солнца (2.1033 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 1014-1030 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней. Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 1014 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр. Заключение Черная дыра – область пространства, в которой поле тяготения настолько сильно, что вторая космическая скорость (параболическая скорость) для находящихся в этой области тел должна превышать скорость света, т.е. из черной дыры ничто не может вылететь – ни излучение, ни частицы, ибо в природе ничто не может двигаться со скоростью, большей скорости света. Границу области, за которую ничто не выходит, даже свет, называют горизонтом черной дыры. Необычным свойством черной дыры является фундаментальное замедление времени. Черная дыра так сильно искривляет пространство, что как бы отсекает себя от Вселенной. Она может буквально исчезнуть из Вселенной. Возникает вопрос – куда? Математический анализ дает несколько решений. Особенно интересно одном из них: черная дыра может перемещаться в другую часть нашей Вселенной или даже внутрь иной Вселенной. Таким образом, воображаемый космический путешественник мог бы использовать черную дыру для передвижения в пространстве и времени нашей Вселенной, и даже проникновения в другую Вселенную. Черная дыра оказывается достаточно динамичным физическим объектом. Есть три способа обнаружить черную дыру. 1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. 2. Черная дыра активно всасывает в себя материю из окружающего пространства. 3. При слиянии двух черных дыр возникает гравитационное излучение. Черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Список литературы 1. Артемьев Т.Д. Происхождение Вселенной. М.. 2005. 2. Атаманов К.Г. Возникновение жизни на Земле. М., 2005. 3. Бочаров Н. Б. Строение Вселенной. М., 2006. 4. Васильев К.А. Методы изучения Вселенной. М., 2005. 5. Григорьев П.Р. Теории возникновения Жизни на Земле. М., 2006. 6. Дж. Гир, Шах X. Зыбкая твердь. М., 2003. 7. Исаева Н.Д. Проблемы современных теорий возникновения Вселенной. М., 2006. 8. Исмаилова С. Т. Геология – М., Аванта +, 2005. 9. Коваленко А.А. Зарождение Жизни. М., 2006. 10. Кузнецов В.В. Биографии замечательных физиков. М., 2003. 11. Нежиховский Р. А. Наводнения на реках и озерах. М., 2006 г. 12. Мартене Л. К. Вольфсон М. Б. и др. Техническая энциклопедия т.14, т.15 М., 2003г. 13. Микрюков В. Ю. Обеспечение безопасности жизнедеятельности М., 2006. 14. Полишко В. В., Буянов Н. А. Основы безопасности жизнедеятельности. Смоленск, 2005. 15. Человек и стихия - научно-популярный гидрометеорологический сборник./ под. ред. Кавценко С.А. М., 2006.


Скачиваний: 1
Просмотров: 0
Скачать реферат Заказать реферат