Преобразования фигур

Преобразование фигуры F называется преобразованием подобия, если при
этом преобразовании расстояния между точками изменяются в одно и то же
число раз, т.е. для любых точек X и Y фигуры F и точек X’, Y’ фигуры

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Малоязовская башкирская гимназия

Геометрия

Реферат

на тему:

“Преобразования фигур”

Выполнил: ученик 10 Б класса

Халиуллин А.Н.

Проверила: Исрафилова Р.Х.

Малояз 2003 год

План:

I. Преобразование.
II. Виды преобразований

1. Гомотетия

2. Подобие

3. Движение
III. Виды движения

1. Симметрия относительно точки

2. Симметрия относительно прямой

3. Симметрия относительно плоскости

4. Поворот

5. Параллельный перенос в пространстве

I. Преобразование - смещение каждой точки данной фигуры каким-нибудь
образом, и получение новой фигуры.

II. Виды преобразования в пространстве: подобие, гомотетия, движение.

Подобие

Преобразование фигуры F называется преобразованием подобия, если при
этом преобразовании расстояния между точками изменяются в одно и то же
число раз, т.е. для любых точек X и Y фигуры F и точек X’, Y’ фигуры F’, в
которые он переходят, X’Y’ = k * XY.

Свойства подобия: 1. Подобие переводит прямые в прямые, полупрямые –
в полупрямые, отрезки – в отрезки.

2. Подобие сохраняет углы между полупрямыми

3. Подобие переводит плоскости в плоскости.
Две фигуры называются подобными, если они переводятся одна в другую
преобразованием подобия.

Гомотетия

Гомотетия – простейшее преобразование относительно центра O с
коэффициентом гомотетии k. Это преобразование, которое переводит
произвольную точку X’ луча OX, такую, что OX’ = k*OX.

Свойство гомотетии: 1. Преобразованием гомотетии переводит любую
плоскость, не проходящую через центр гомотетии, в параллельную плоскость
(или в себя при k=1).

Доказательство. Действительно, пусть O – центр гомотетии и ( - любая
плоскость, не проходящая через точку O. Возьмем любую прямую AB в плоскости
(. Преобразование гомотетии переводит точку A в точку A’ на луче OA, а
точку B в точку B’ на луче OB, причем OA’/OA = k, OB’/OB = k, где k –
коэффициент гомотетии. Отсюда следует подобие треугольников AOB и A’OB’. Из
подобия треугольников следует равенство соответственных углов OAB и OA’B’,
а значит, параллельность прямых AB и A’B’. Возьмем теперь другую прямую AC
в плоскости (. Она при гомотетии перейдет а параллельную прямую A’C’. При
рассматриваемой гомотетии плоскость (перейдет в плоскость (’, проходящую
через прямые A’B’, A’C’. Так как A’B’||AB и A’C’||AC, то по теореме о двух
пересекающихся прямых одной плоскости соответственно параллельными с
пересекающимися прямыми другой плоскости, плоскости ( и (’ параллельны,
что и требовалось доказать.

Движение

Движением - преобразование одной фигуры в другую если оно сохраняет
расстояние между точками, т.е. переводит любые две точки X и Y одной фигуры
в точки X , Y другой фигуры так, что XY = X Y

Свойства движения: 1. Точки, лежащие на прямой, при движении
переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного
расположения. Это значит, что если A, B, C, лежащие на прямой, переходят в
точки A1,B1,C1. То эти точки также лежат на прямой; если точка B лежит
между точками A и C, то точка B1 лежит между точками A1 и C1.

Доказательство. Пусть точка B прямой AC лежит между точками A и C.
Докажем, что точки A1,B1,C1 лежат на одной прямой.

Если точка A1,B1,C1 не лежат на прямой, то они являются вершинами
треугольника. Поэтому A1C1


Скачиваний: 1
Просмотров: 0
Скачать реферат Заказать реферат