Оптические явления природы

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще мало знали об окружающем мире, радугу считали “небесным знамением”.

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Содержание

1. Радуга 3
2. Северное сияние 5
3. Гало 8
4. Мираж 10
Список литературы 14

1. Радуга

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще мало знали об окружающем мире, радугу считали “небесным знамением”. Так, древние греки думали, что радуга - это улыбка богини Ириды.
Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, а иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.
Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя – на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42º(рис. 1).

Рисунок 1 – Центр радуги
У радуги различают семь основных цветов, плавно переходящих один в другой.
Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.
Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.
Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Партнером.
Можно рассмотреть простейший случай: пусть на капли, имеющих форму шара, падает пучок параллельных солнечных лучей (рис. 10). Луч, падающий на поверхность капли в точке А, преломляется внутри нее по закону преломления:
n sin α=n sin β, где n=1, n≈1,33 –
соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.
Внутри капли идет по прямой луч АВ. В точке В происходит частичное преломление луча и частичное его отражение. Надо заметить, что , чем меньше угол падения в точке В, а следовательно и в точке А, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча.
Луч АВ после отражения в точке В происходит под углом β`=β b попадает в точку С, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под углом γ, а отраженный может пройти дальше, в точку D и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, вышедший из капли в точке В. Но наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей. Лучи же, преломленные в точке С, создают в совокупности на фоне темной тучи первичную радугу, а лучи, испытывающие преломление в точке D дают вторичную радугу, которая менее интенсивна, чем первичная.
При рассмотрении образования радуги нужно учесть еще одно явление – неодинаковое преломление волн света различной длины, то есть световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления γ и угла отклонения лучей Θ в капле различны для лучей различной окраски.

2. Северное сияние

Одним из красивейших оптических явлений природы является полярное сияние.
В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.
Полярные сияния наблюдают в двух основных формах – в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент.
Различают четыре типа полярных сияний:
Однородная дуга – светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба ;
Лучистая дуга – лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;
Лучистая полоса – с ростом активности более крупные складки накладываются на мелкие;
При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.
Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.
По яркости сияния разделяют на четыре класса, отличающиеся друг от друга на один порядок (то есть в 10 раз). К первому классу относятся сияния, еле заметные и приблизительно равные по яркости Млечному Пути, сияние же четвертого класса освещают Землю так ярко, как полная Луна.
Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх, что сказалось на усиленном торможении искусственных спутников Земли, проходящих эти зоны.
Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают магнитные бури, так называемые дополнительные неустойчивые магнитные поля. Когда атмосфера сияет, она излучает рентгеновские лучи, являющиеся, скорей всего результатом торможения электронов в атмосфере.
Частые вспышки сияния практически всегда сопровождаются звуками, напоминающими шум, треск. Полярные сияния оказывают большое влияние на сильные изменения в ионосфере, влияющие в свою очередь на условия радиосвязи, т. е. радиосвязь сильно ухудшается, в результате чего возникают сильные помехи, или даже полная потеря приема.
Земля - это огромный магнит, северный полюс которого находится вблизи южного географического полюса, а южный – вблизи северного. А силовые линии магнитного поля Земли - это геомагнитные линии, выходящие из области, прилегающей к северному магнитному полюсу Земли. Они охватывают весь земной шар и входят в него в области южного магнитного полюса, образуя тороидальную решетку вокруг Земли.
Считалось в течение длительного периода времени, что расположение магнитных силовых линий симметрично относительно земной оси. Но на самом деле оказалось, что так называемый “солнечный ветер”, т. е. поток протонов и электронов, излучаемых Солнцем, налетает на геомагнитную оболочку Земли с высоты около 20000 км. Он оттягивает ее в сторону от Солнца, тем самым у Земли образуется своеобразный магнитный “хвост”.
Попавшие в магнитное поле Земли, электрон или протон движутся по спирали, навиваясь на геомагнитную линию. Эти частицы, попавшие из солнечного ветра в магнитное поле Земли, разделяются на две части: одна часть вдоль магнитных силовых линий сразу стекает в полярные области Земли, а другая - попадает внутрь тероида и движется внутри него, как это можно по правилу левой руки, вдоль замкнутой кривой АВС. В конце концов, эти протоны и электроны по геомагнитным линиям также стекают в область полюсов, где появляется их увеличенная концентрация. Протоны и электроны производят ионизацию и возбуждение атомов и молекул газов. Для этого они обладают достаточной энергией. Поскольку протоны прилетают на Землю с энергиями 10000-20000эв (1эв= 1.6 10 дж), а электроны с энергиями 10-20эв. А для ионизации же атомов нужно: для водорода – 13,56 эв, для кислорода - 13,56 эв, для азота – 124,47 эв, для возбуждения же еще меньше.
По принципу того, как это происходит в трубках с разреженным газом при пропускании через них токов, возбужденные атомы газов отдают обратно полученную энергию в виде света.
Зеленое и красное свечение, по результатам спектрального исследования принадлежит возбужденным атомам кислорода, а инфракрасное и фиолетовое – ионизованным молекулам азота. Некоторые линии излучения кислорода и азота образуются на высоте 110 км, а красное свечение кислорода – на высоте 200-400 км. Следующим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Такой протон, после захвата электрона, превращается в возбужденный атом водорода и дает излучение красным светом.
После вспышек на Солнце обычно через день-два происходят вспышки сияний. Это указывает на связь между этими явлениями. Исследование при помощи ракет показало, что в местах большей интенсивности сияний сохраняется более высокий уровень ионизации газов электронами. По мнению ученых, максимальная интенсивность полярных сияний достигается у берегов океанов и морей.
Существует ряд трудностей для научного объяснения всех явлений, связанных с полярными сияниями. То есть, неизвестен полностью механизм ускорения частиц до определенных энергий, не ясны их траектории движения в околоземном пространстве, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц.

3. Гало

Человек всегда с трепетом и интересом смотрел на небо, пытаясь философски осмыслить жизнь и получить ответы на извечный вопрос – кто Я и откуда? Но кроме хаотического танца облаков и загадочного мерцания звезд он ничего не видел. Однако, некоторые часто наблюдаемые оптические явления в атмосфере, такие как кресты, круги вокруг солнца или луны были необъяснимыми. Им приписывался в древние времена религиозный характер, а в наше время инопланетный (вмешательство инопланетных цивилизаций).
Рассмотрим одно из таких явлений - гало - это преломление и отражение света в ледяных кристалликах облаков верхнего яруса; представляют собой светлые или радужные круги вокруг Солнца или Луны, отделенные от светила темным промежутком. Гало являются наиболее верным признаком ухудшения погоды.
Изучая появления на небо гало, ученые уже давно заметили, что они бывают тогда, когда Солнце затянуто белой, блестящей дымкой - тонкой пеленой высоких перистых облаков. Такие облака плавают на высоте 6-8 километров над землей и состоят из мельчайших кристалликов льда, которые имеют чаще всего форму шестигранных столбиков или пластинок. Поднимаясь и опускаясь в потоках воздуха, ледяные кристаллики, подобно зеркалу, отражают или, подобно призме, преломляют падающие на них солнечные лучи. При этом от некоторых кристалликов отраженные лучи могут попадать в наши глаза. Тогда мы и наблюдаем различные формы гало. Вот одно из таких форм: на небе появляется светлый горизонтальный круг, опоясывающий небо параллельно горизонту.
Ученые проводили специальные опыты и нашли, что такой круг возникает благодаря отражению солнечного света от боковых граней ледяных шестигранных кристалликов, плавающих в воздухе в вертикальном положении. Лучи Солнца падают на такой кристаллик, отражаются от него, как от зеркала, и попадают нам в глаза. Но наши глаза не могут обнаружить искривления световых лучей, поэтому мы видим отраженное изображение Солнца не там, где оно находится в действительности, а на прямой линии, идущей от глаз, причем изображение будет видно на той же высоте над горизонтом, что и действительное Солнце.
Зеркальные изображения Солнца, попадающие к нам в глаза от отдельных кристалликов, сливаются, и мы видим сплошной светлый круг, параллельный горизонту. Или бывает так: Солнце только что ушло за горизонт, и на темном вечернем небе вдруг возникает светлый столб. В этой игре света, как показали специальные опыты, участвуют ледяные пластинки, плавающие, а атмосфере в горизонтальном положении. Лучи Солнца, которые только что ушло за горизонт, падают на колеблющиеся нижние грани таких пластинок, отражаются и попадают в глаза наблюдателя. Когда таких кристалликов в воздухе много, зеркальные отображения Солнца, попадающие к нам в глаза от отдельных ледяных пластинок, сливаются в одно, и мы видим растянутое, искаженное до неузнаваемости изображение солнечного диска - на небе возникает светящийся столб.На фоне вечерней зари он имеет иногда красноватый цвет. С явлением, подобным этому, каждый из нас встречался не раз. Вспомните солнечную или лунную "дорожку" на воде. Здесь мы видим точно такое же искаженное отраженное Солнца или Луны, только роль зеркала выполняет не кристаллики льда, а поверхность воды.
Окрашенные гало объясняются преломлением света в шестигранных призматических кристаллах ледяных облаков, неокрашенные (бесцветные) формы - отражением света от граней кристаллов.

4. Мираж

Мираж - оптическое явление в атмосфере, часто в условиях пустыни, заключающееся в том, что вместе с отдаленными предметами (или участками неба) видны их мнимые изображения, смещенные относительно самих предметов; иногда видны изображения предметов, находящихся за линией горизонта.
Отражение неба в приземных слоях воздуха нередко создает впечатление водной поверхности. Мираж объясняется искривлением лучей света в неодинаково нагретых и имеющих разную плотность слоях воздуха.
Из большего многообразие миражей выделим несколько видов: “озерные” миражи, называемые также нижними миражами, верхние миражи, двойные и тройные миражи, миражи сверхдальнего видения.
Нижние (“озерные”) миражи возникают над сильно нагретой поверхностью. Верхние миражи возникают, наоборот, над сильно охлажденной поверхностью, например над холодной водой. Если нижние миражи наблюдают, как правило, в пустынях и степях, то верхние наблюдают в северных широтах.
Верхние миражи отличаются разнообразием. В одних случаях они дают прямое изображение, в других случаях в воздухе появляется перевернутое изображение. Миражи могут быть двойными, когда наблюдаются два изображения, простое и перевернутое. Эти изображения могут быть разделены полосой воздуха (одно может оказаться над линией горизонта, другое под ней), но могут непосредственно смыкаться друг с другом. Иногда возникает еще одно - третье изображение.
Особенно удивительны миражи сверхдальнего видения.
Объяснение нижнего (“озерного”) миража. Если воздух у самой поверхности земли сильно нагрет и, следовательно, его плотность относительно мала, то показатель преломления у поверхности будет меньше, чем в более высоких воздушных слоях. Изменение показателя преломления воздуха n с высотой h вблизи земной поверхности для рассматриваемого случая показано на рисунке 3, а.
В соответствии с установленным правилом, световые лучи вблизи поверхности земли будут в данном случае изгибаться так, чтобы их траектория была обращена выпуклостью вниз. Пусть в точке A находится наблюдатель. Световой луч от некоторого участка голубого неба попадет в глаз наблюдателя, испытав указанное искривление. А это означает, что наблюдатель увидит соответствующий участок небосвода не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним изображение голубого неба. Если представить себе, что у линии горизонта находятся холмы, пальмы или иные объекты, то наблюдатель увидит и их перевернутыми, благодаря отмеченному искривлению лучей, и воспримет как отражения соответствующих объектов в несуществующей воде. Так возникает иллюзия, представляющая собой “озерный” мираж.
Простые верхние миражи. Можно предположить, что воздух у самой поверхности земли или воды не нагрет, а, напротив, заметно охлажден по сравнению с более высокими воздушными слоями; изменение n с высотой h показано на рисунке 4, а. Световые лучи в рассматриваемом случае изгибаются так, что их траектория обращена выпуклостью вверх. Поэтому теперь наблюдатель может видеть объекты, скрытые от него за горизонтом, причем он будет видеть их вверху как бы висящими над линией горизонта. Поэтому такие миражи называют верхними.
Верхний мираж может давать как прямое, так и перевернутое изображение. Показанное на рисунке прямое изображение возникает, когда показатель преломления воздуха уменьшается с высотой относительно медленно. При быстром уменьшении показателя преломления образуется перевернутое изображение. В этом можно убедится, рассмотрев гипотетический случай – показатель преломления на некоторой высоте h уменьшается скачком (рис. 5). Лучи объекта, прежде чем попасть к наблюдателю А испытывают полное внутреннее отражение от границы ВС ниже которой в данном случае находится более плотный воздух. Видно, что верхний мираж дает перевернутое изображение объекта. В действительности нет скачкообразной границы между слоями воздуха, переход совершается постепенно. Но если он совершается достаточно резко, то верхний мираж даст перевернутое изображение (рис. 5).
Двойные и тройные миражи. Если показатель преломления воздуха изменяется сначала быстро, а затем медленно, то в этом случае лучи в области I будут искривляться быстрее, чем в области II. В результате возникают два изображения (рис. 6, 7). Световые лучи 1, распространяющиеся в пределах воздушной области I, формируют перевернутое изображение объекта. Лучи 2, распространяющиеся в основном в пределах области II, искривляются в меньшей степени и формируют прямое изображение.
Чтобы понять как появляется тройной мираж, нужно представить три последовательный воздушные области: первая (у самой поверхности), где показатель преломления уменьшается с высотой медленно, следующая, где показатель преломления уменьшается быстро, и третья область, где показатель преломления снова уменьшается медленно. На рисунке представлено рассматриваемое изменение показателя преломления с высотой. На рисунке показано, как возникает тройной мираж. Лучи 1 формируют нижнее изображение объекта, они распространяются в пределах воздушной области I. Лучи 2 формируют перевернутое изображение; попадаю в воздушную область II, эти лучи испытывают сильное искривление. Лучи 3 формируют верхнее прямое изображение объекта.
Мираж сверхдальнего видения. Природа этих миражей изучена менее всего. Ясно, что атмосфера должна быть прозрачной, свободной от водяных паров и загрязнений. Но этого мало. Должен образоваться устойчивый слой охлажденного воздуха на некоторой высоте над поверхностью земли. Ниже и выше этого слоя воздух должен быть более теплым. Световой луч, попавший внутрь плотного холодного слоя воздуха, как бы “запертым” внутри него и распространяется в нем как по своеобразному световоду. Траектория луча на рисунке 8 все время обращена выпуклостью в сторону менее плотных областей воздуха.
Возникновение сверхдальних миражей можно объяснить распространением лучей внутри подобных “световодов”, которые иногда создает природа.

Список литературы

1. Тарасов Л. В. Физика в природе. М.: Просвещение, 1998.
2. Булат Л. Оптические явления в природе. М.: Просвещение, 1999.
3. Блудов М. И. Беседы по физике. М.: Просвещение, 1995.
4. Физика 10, // Г. Я. Мякишев Б. Б. Буховцев М.: Просвещение, 1999.
5. Энциклопедический словарь юного физика, составитель В. А. Чуянов, М.: Педагогика, 1994.
6. Справочник школьника по физике, составитель - филологическое общество “Слово”, Москва, 1995 год.
7. Физика 11, Н. М. Шахмаев, С. Н. Шахмаев, Д. Ш. Шодиев, М.: Просвещение, 1991.


Скачиваний: 2
Просмотров: 2
Скачать реферат Заказать реферат