Образование звезд

Наиболее массивные звезды живут сравнительно недолго — несколько миллионов лет. Если такие звезды наблюдаются, значит, образование звезд не завершилось миллиарды лет назад, а происходит и в настоящую эпоху.

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

ОБРАЗОВАНИЕ ЗВЕЗД. ПРОБЛЕМА ВОЗНИКНОВЕНИЯ ЖИЗНИ
1. Образование звезд. Наиболее массивные звезды живут сравнительно
недолго — несколько миллионов лет. Если такие звезды наблюдаются, значит,
образование звезд не завершилось миллиарды лет назад, а происходит и в
настоящую эпоху.
Звезды, масса которых многократно превышает массу Солнца, большую часть
жизни обладают огромными размерами, высокой светимостью и температурой. Из-
за высокой температуры они имеют голубоватый цвет, и поэтому их называют
голубыми сверхгигантами. Мы уже знаем, что такие звезды, нагревая
окружающий межзвездный газ, приводят к образованию газовых туманностей. За
свою сравнительно короткую жизнь массивные звезды не успевают очень далеко
уйти от тех мест, где они родились. Поэтому светлые газовые туманности и
голубые сверхгиганты указывают нам на положение тех областей в Галактике,
где недавно происходило или происходит и сейчас образование звезд.
Оказалось, что молодые звезды не распределены в пространстве случайным
образом. Существуют обширные области, где они совсем не наблюдаются, и
районы, где их сравнительно много. Больше всего голубых сверхгигантов
наблюдается в области Млечного Пути, т. е. вблизи плоскости Галактики, там,
где концентрируется газопылевая межзвездная среда.
Но и вблизи плоскости Галактики молодые звезды распределены
неравномерно. Они почти никогда не встречаются поодиночке. Чаще всего эти
звезды образуют рассеянные скопления и более разреженные звездные
группировки больших размеров, названные звездными ассоциациями, которые
насчитывают десятки, а иногда и сотни голубых сверхгигантов. Самые молодые
из звездных скоплений и ассоциаций имеют возраст менее 10 млн. лет. Почти
во всех случаях эти молодые образования наблюдаются в областях повышенной
плотности межзвездного газа. Это указывает на то, что процесс
звездообразования связан с межзвездным газом.
Примером области звездообразования является гигантский газовый комплекс
в созвездии Ориона. Он занимает на небе практически всю площадь этого
созвездия и включает в себя большую массу нейтрального и молекулярного
газа, пыли и целый ряд светлых газовых туманностей. Образование звезд в нем
продолжается и в настоящее время.
Согласно наиболее разработанной гипотезе, звезды возникают из облаков
холодного межзвездного газа. Однако завершенной и общепринятой теории
образования звезд пока еще не создано. Ученые усиленно работают над этой
проблемой. Познакомимся с основными принципами, на которых базируются
представления о формировании звезд из газопылевой среды.
Конденсация газа в звезды в определенном смысле напоминает другой
физический процесс: конденсацию водяного пара в капельки воды при его
охлаждении. И в том и в другом случае происходит многократное увеличение
плотности вещества. Но если конденсация пара совершается в результате
взаимодействия молекул, то межзвездный газ сжимается прежде всего благодаря
действию гравитации. Поэтому конденсация газа в звезды называется
гравитационной конденсацией.
Сила гравитационного притяжения между отдельными частицами всегда
стремится сжать газ. Сжатию обычно препятствует сила внутреннего давления
газа, связанного с хаотическими движениями его частиц — атомов или молекул.
Чем меньше температура газа, тем меньше его давление и тем большую роль
может играть притяжение отдельных частиц друг к другу. В обычных облаках
межзвездного газа силы гравитации очень малы по сравнению с силами
внутреннего давления. Но в холодных плотных молекулярных облаках гравитация
оказывается сильнее, и образующиеся отдельные сгустки газовой среды должны
сжиматься, увеличивая свою плотность. Конечным результатом такого сжатия
может явиться образование звезд. Сжатие газа полностью прекратится, когда в
центре сжимающегося газового шара температура и давление станут настолько
высокими, что начнутся термоядерные реакции. В результате образуется
звезда.
Первое время свет молодой звезды может очень сильно поглощаться плотной
окружающей газопылевой средой, и тогда звезда и нагретая ею пыль будут
наблюдаться как инфракрасный источник, потому что для инфракрасных лучей
среда значительно прозрачнее. Такие источники были обнаружены в областях
звездообразования. По-видимому, некоторые из них являются недавно
сформировавшимися звездами.
Формирование звезд из газа — процесс очень медленный, он требует многих
миллионов лет.
Солнце, как мы знаем, является типичной звездой. Поэтому и при
образовании других звезд могут возникать планетные системы.
Планеты и малые тела Солнечной системы возникли в газопылевом
протопланетном диске, окружавшем молодое Солнце. Вместе с другими планетами
возникла и Земля. Первоначально ее атмосфера и физические условия на
поверхности были совсем не такими, как сейчас. Температура была значительно
выше, а атмосфера содержала очень много углекислого газа. Никакой жизни на
Земле в то время не могло существовать. И лишь спустя несколько миллиардов
лет после своего формирования Земля стала похожа на современную планету.

Ученые из Дюссельдорфского университета и исследовательского центра в Глазго считают, что первые формы жизни зародились в так называемых "неорганических инкубаторах" - небольших отсеках в скалах железного колчедана на дне океана. Эта теория ставит с ног на голову общепринятое представление о происхождении жизни на Земле. В научном мире разразился ожесточенный спор по поводу новой и весьма противоречивой теории возникновения жизни на Земле. Один из выводов новой теории заключается в том, что жизнь все-таки может существовать на тех планетах, где, по нынешнему всеобщему убеждению, жизни не может быть вовсе.

С 1930-х годов большинство ученых полагает, что теория происхождения клеток основывается на том, что жизнь появилась в океане благодаря влиянию атмосферы.

Сейчас же профессор Мартин из Дюссельдорфа и профессор Рассел из Глазго утверждают, что сначала на дне морском появились "неживые" клетки из железного колчедана, которые были частью поверхности Земли. Они существовали в полной темноте в диком холоде на дне океанов.

Жизнь, утверждают они, произошла в результате химической реакции конвекции на земной коре; в принципе, такая реакция возможна и на любой другой - влажной и скалистой - планете.

Доктор Рассел так объясняет своб теорию: "Гидротермальные потоки, богатые водородом, цианидом, сульфидами и окисью углерода, вырвались из земной коры на дно океана, в результате чего в скалах железного колчедана началась химическая реакция. Появились клетки, в которых немедленно началась сцепка молекул. Именно там, по нашему убеждению, началась жизнь".

Если верить этой теории, то жизнь вполне может существовать и на других планетах или крупных спутниках планет - таких, как покрытая льдом Европа (спутник Юпитера).

Cтатья о новой теории опубликована в научном журнале Philosophical Transactions B, издании британского Королевского общества, сообщает Би-би-си.

МЕЖЗВЕЗДНАЯ СРЕДА — это вещество, наблюдаемое в пространстве между звездами.

Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Тем не менее такие предположения высказывались давно. Еще в середине 19 в. российский астроном В.Струве пытался (правда, без особого успеха) научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896-1956) и советским астрономом Б.А.Воронцовым-Вельяминовым (1904-1994), вернее, так была обнаружена одна из составляющих межзвездной среды — мекая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь. Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды — ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским. Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды — очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно — среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления — космическая газодинамика и космическая электродинамика, изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды — нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав. Изучение такой сложной системы как «звезды - межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

Эмиссионные газовые туманности. Большая часть межзвездной среды не доступна наблюдениям ни в какие оптические телескопы. Наиболее яркое исключение из этого правила — газовые эмиссионные туманности, наблюдавшиеся еще с самыми примитивными оптическими средствами. Самая известная из них — Большая туманность Ориона, которая видна даже невооруженным глазом (при условии очень хорошего зрения) и особенно красива при наблюдении в сильный бинокль или небольшой телескоп.

Известны многие сотни газовых туманностей на различных расстояниях от нас, причем почти все они сосредоточены вблизи полосы Млечного Пути — там, где чаще всего встречаются молодые горячие звезды.

В эмиссионных туманностях плотность газа значительно выше, чем в окружающем их пространстве, но и в них концентрация частиц составляет лишь десятки или сотни атомов в кубическом сантиметре. Такая среда по «земным» меркам не отличима от полного вакуума (для сравнения: концентрация частиц воздуха при нормальном атмосферном давлении составляет в среднем 3Ї1019 молекул в см3, и даже наиболее мощные вакуумные насосы не создадут такой низкой плотности, какая существует в газовых туманностях). Туманность Ориона имеет сравнительно небольшой линейный размер (20-30 световых лет). Поскольку диаметры некоторых туманностей превышают 100 св. лет, полная масса газа в них может достигать десятков тысяч масс Солнца.

Эмиссионные туманности светятся потому, что внутри них или рядом с ними находятся звезды редкого типа — горячие голубые звезды-сверхгиганты. Правильнее эти звезды следовало бы назвать ультрафиолетовыми, поскольку их основное излучение происходит в жестком ультрафиолетовом диапазоне спектра. Излучение с длиной волны короче 91,2 нм очень эффективно поглощается межзвездными атомами водорода и ионизует их, т. е. разрывает в них связи между электронами и ядрами атомов — протонами. Этот процесс (ионизация) сбалансирован противоположным процессом (рекомбинация), в результате которого под действием взаимного притяжения электроны вновь объединяются с протонами в нейтральные атомы. Такой процесс сопровождается излучением электромагнитных квантов. Но обычно электрон, соединяясь с протоном в нейтральный атом, не сразу попадает на нижний энергетический уровень атома, а задерживается на нескольких промежуточных, и каждый раз при переходе между уровнями атом излучает фотон, энергия которого меньше, чем у того фотона, который ионизовал атом. В результате, один ультрафиолетовый фотон, ионизовавший атом, «дробится» на несколько оптических. Так газ преобразует не видимое глазом ультрафиолетовое излучение звезды в оптическое излучение, благодаря которому мы видим туманность.

Эмиссионные туманности типа Туманности Ориона — это газ, нагреваемый ультрафиолетовыми звездами. Ту же природу имеют и планетарные туманности, состоящие из газа, сбрасываемого стареющими звездами.

Но наблюдаются и светящиеся газовые туманности несколько иной природы, которые возникают при взрывных процессах в звездах. Прежде всего, это остатки взорвавшихся сверхновых звезд, примером которых может служить Крабовидная туманность в созвездии Тельца. Такие туманности нестационарны, их отличает быстрое расширение.

Внутри газовых остатков сверхновых звезд нет ярких ультрафиолетовых источников. Энергия их свечения — это преобразованная энергия газа, разлетающегося после взрыва звезды, плюс энергия, выделяемая сохранившимся остатком Сверхновой. В случае Крабовидной туманности таким остатком является компактная и быстро вращающаяся нейтронная звезда, непрерывно выбрасывающая в окружающее пространство потоки высокоэнергичных элементарных частиц. Через десятки тысяч лет подобные туманности, расширяясь, постепенно растворяются в межзвездной среде.

Межзвездная пыль. Даже беглый взгляд на изображение любой эмиссионной туманности достаточно большого размера позволяет увидеть на ее фоне резкие темные детали — пятна, струи, причудливые «заливы». Это — проектирующиеся на светлую туманность расположенные недалеко от нее небольшие и более плотные облака, непрозрачные вследствие того, что к газу всегда примешена межзвездная пыль, поглощающая свет.

Присутствует пыль и вне газовых облаков, заполняя (вместе с очень разреженным газом) все пространство между ними. Такая распределенная в пространстве пыль приводит к трудно учитываемому ослаблению света далеких звезд. Свет частично поглощается, а частично — рассеивается мелкими твердыми пылинками. Наиболее сильное ослабление наблюдается в направлениях, близких к направлению на Млечный Путь (на плоскость галактического диска). В этих направлениях, пройдя тысячу световых лет, видимый свет ослабляется примерно на 40 процентов. Если учесть, что протяженность нашей Галактики — десятки тысяч световых лет, то становится ясно, что мы можем исследовать звезды галактического диска лишь в небольшой его части. Чем короче длина волны излучения, тем сильнее поглощается свет, в результате чего далекие звезды кажутся покрасневшими. Поэтому межзвездное пространство прозрачнее всего для длинноволнового инфракрасного излучения. Лишь наиболее плотные газопылевые облака остаются непрозрачными даже для инфракрасного света.

Следы космической пыли можно увидеть и без телескопа. В безлунную летнюю или осеннюю ночь хорошо видно «раздвоение» полосы Млечного Пути в области созвездия Лебедя. Оно связано с близкими пылевыми облаками, слой которых закрывает лежащие позади них яркие области Млечного Пути. Можно найти темные участки и в других областях Млечного Пути. Наиболее плотные газопылевые облака, проектируясь на области неба, богатые звездами, выглядят темными пятнами даже в инфракрасном свете.

Иногда вблизи холодных газо-пылевых облаков располагаются яркие звезды. Тогда их свет рассеивается на пылинках и видна «отражательная туманность».

В отличие от эмиссионных туманностей, они имеют непрерывный спектр, как и спектр освещающих их звезд.

Изучая отраженный или прошедший сквозь облако свет звезд, можно многое узнать о частицах пыли. Например, поляризация света говорит о вытянутой форме пылинок, которые приобретают определенную ориентацию под действием межзвездного магнитного поля. Твердые частицы космической пыли имеют размер порядка 0,1-1 мкм. Вероятно, у них железо-силикатное или графитовое ядрышко, покрытое ледяной «шубой» из легких элементов. Графитовые и силикатные ядрышки пылинок, по-видимому, образуются в относительно прохладных атмосферах звезд-гигантов и выбрасываются затем в межзвездное пространство, где остывают и покрываются шубой из летучих элементов.

Полная масса пыли в Галактике составляет не более 1% от массы межзвездного газа, но и это немало, поскольку эквивалентно массе десятков миллионов таких звезд как Солнце.

Поглощая световую энергию звезд, пыль нагревается до небольшой температуры (обычно — на несколько десятков градусов выше абсолютного нуля), а излучает поглощенную энергию в форме очень длинноволнового инфракрасного излучения, которое на шкале электромагнитных волн занимает промежуточное положение между оптическим и радио диапазонами (длина волны — десятки и сотни микрометров). Это излучение, принимаемое телескопами, установленными на специализированных космических аппаратах, дает неоценимую информацию о массе пыли и источниках ее нагрева в нашей и других галактиках.

Атомарный, молекулярный и горячий газ. Межзвездный газ — это, в основном, смесь водорода (около 70%) и гелия (около 28%) с очень небольшой примесью более тяжелых химических элементов. Средняя концентрация частиц газа в межзвездном пространстве чрезвычайно мала и не превышает одной частицы на 1-2 кубических см. В объеме, равном объему земного шара, содержится около 1 кг межзвездного газа, но это только в среднем. Газ очень неоднороден как по плотности, так и по температуре.

Температура основной массы газа не превышает нескольких тысяч градусов — недостаточно высокой для того, чтобы водород или гелий был ионизован. Такой газ называют атомарным, поскольку он состоит из нейтральных атомов. Холодный атомарный газ практически не излучает в оптическом диапазоне, поэтому долгое время о нем почти ничего не было известно.

Самый распространенный атомарный газ — водород (условное обозначение — HI) — наблюдается по радиоизлучению на длине волны около 21 см. Радионаблюдения показали, что газ образует облака неправильной формы с температурой в несколько сотен кельвинов и более разреженную и горячую межоблачную среду. Полная масса атомарного газа в галактике достигает нескольких миллиардов масс Солнца.

В наиболее плотных облаках газ охлаждается, отдельные атомы объединяются в молекулы, и газ становится молекулярным. Самая распространенная молекула — Н2 — не излучает ни в радио, ни в оптическом диапазоне (хотя у этих молекул есть линии поглощения в ультрафиолетовой области), и обнаружить молекулярный водород чрезвычайно трудно. К счастью, вместе с молекулярным водородом возникают десятки других молекул, содержащих более тяжелые элементы — такие как углерод, азот и кислород. По их радиоизлучению на определенных, хорошо известных частотах оценивается масса молекулярного газа. Пыль делает молекулярные облака непрозрачными для света, и именно они видны как темные пятна (прожилки) на более светлом фоне эмиссионных туманностей.

Радиоастрономические наблюдения позволили обнаружить в межзвездном пространстве довольно сложные молекулы: гидроксил OH; пары воды H2O и аммиака NH, формальдегид H2CO, окись углерода CO, метанол (древесный спирт) CH3OH, этиловый (винный) спирт CH3CH2OH и еще десятки других, даже более сложных молекул. Все они найдены в плотных и холодных газопылевых облаках, пыль в которых защищает хрупкие молекулы от разрушающего влияния ультрафиолетового излучения горячих звезд. Вероятно, поверхность холодных пылинок служит как раз тем местом, где образуются сложные молекулы из налипших на пылинку отдельных атомов. Чем плотнее и массивнее облако, тем большее разнообразие молекул в нем обнаруживается.

Молекулярные облака очень разнообразны.

Некоторые небольшие облачка мы видим интенсивно «испаряющимися» под действием света близких звезд. Существуют, однако, и гигантские очень холодные облака с массой, превышающей миллион масс Солнца (подобных образований в нашей Галактике больше сотни). Такие облака называются гигантскими молекулярными облаками. Для них существенным является собственное гравитационное поле, удерживающее газ от расширения. Температура в их недрах лишь на несколько кельвинов выше абсолютного нуля.

Молодые горячие звезды могут своим коротковолновым излучением нагревать и разрушать молекулярные облака. Особенно много энергии выделяется и сообщается межзвездному газу при взрывах сверхновых, а также веществом, интенсивно истекающим из атмосфер горячих звезд большой светимости (звездным ветром массивных звезд). Газ расширяется и нагревается до миллиона и более градусов. Эта горячая разреженная среда образует гигантские «пузыри» в более холодном межзвездном газе, размеры которых иногда составляют сотни световых лет. Такой газ часто называют «корональным» — по аналогии с газом горячей солнечной короны, хотя межзвездный горячий газ на несколько порядков разреженнее, чем газ короны. Наблюдается такой горячий газ по слабому тепловому рентгеновскому излучению или по ультрафиолетовым линиям, принадлежащим некоторым частично ионизованным элементам.

Космические лучи. Помимо газа и пыли, межзвездное пространство заполнено также очень энергичными частицами «космических лучей», имеющими электрический заряд — электронами, протонами и ядрами некоторых элементов. Эти частицы летят практически со скоростью света по всем возможным направлениям. Их основным (но не единственным) источником служат взрывы сверхновых звезд. Энергия частиц космических лучей на много порядков превышает их энергию покоя Е = m0c2 (здесь m0 — масса покоя частицы, с — скорость света), и обычно находится в пределах 1010 — 1019 эВ (1 эВ = 1,6 Є 10-19 Дж), в очень редких случаях достигая и более высоких значений. Частицы движутся в слабом магнитном поле межзвездного пространства, индукция которого примерно в сто тысяч раз меньше, чем у магнитного поля Земли. Межзвездное магнитное поле, действуя на заряженные частицы с силой, зависящей от их энергии, «запутывает» траектории частиц, и они непрерывно меняют направление своего движения в Галактике. Лишь наиболее высокоэнергичные космические лучи движутся по слабо искривленным путям и по этому не удерживаются в Галактике, уходя в межгалактическое пространство.

Частицы космических лучей, достигающие нашей планеты, сталкиваются с атомами воздуха и, разбивая их, рождают новые многочисленные элементарные частицы, которые образуют настоящие «ливни», выпадая на земную поверхность. Эти частицы (их называют вторичными космическими лучами) удается непосредственно регистрировать лабораторными приборами. Первичные же космические лучи до поверхности Земли практически не доходят, их можно регистрировать за пределами атмосферы. Но о наличии быстрых частиц в межзвездном пространстве удается узнать и по косвенным признакам — по характерному излучению, которое они производят при своем движении.

Заряженные частицы, летящие в межзвездном магнитном поле, отклоняются от прямых траекторий под действием силы Лоренца. Их траектории словно «наматываются» на линии магнитной индукции. Но любое не-прямолинейное движение заряженных частиц, как известно из физики, приводит к излучению электромагнитных волн и постепенной потере энергии частицами. Длина волны излучения космических частиц соответствует радиодиапазону. Особенно эффективно излучают легкие электроны, на движение которых межзвездное магнитное поле влияет сильнее всего из-за их очень малой массы. Это излучение названо синхротронным, поскольку в физических лабораториях оно тоже наблюдается, когда электроны разгоняют в магнитных полях в специальных установках - синхротронах, используемых для получения высокоэнергичных электронов.

Радиотелескопы (см. РАДИОАСТРОНОМИЯ) принимают синхротронное излучение не только от всех областей Млечного Пути, но и от других галактик. Это доказывает наличие там магнитных полей и космических лучей. Синхротронное излучение заметно усилено в спиральных рукавах галактик, где больше плотность межзвездной среды, интенсивнее магнитное поле и чаще происходят взрывы сверхновых — источники космических лучей. Характерной особенностью синхротронного излучения служит его спектр, не похожий на спектр излучения нагретых сред, и сильная поляризация, связанная с направленностью магнитного поля.

Крупномасштабное распределение межзвездной среды. Основная масса газа и пыли концентрируется вблизи плоскости нашей Галактики. Именно там сосредоточены наблюдаемые эмиссионные туманности, облака атомарного и молекулярного газа. Аналогичная картина наблюдается и в других галактиках, похожих на нашу. Когда далекая галактика развернута к нам так, что ее звездный диск виден «с ребра», диск кажется пересеченным темной полосой. Темная полоса — это слой межзвездной среды, непрозрачный из-за наличия пылевых частиц.

Толщина слоя межзвездного газа и пыли обычно составляет несколько сотен св. лет, а диаметр — десятки и сотни тысяч св. лет, поэтому такой слой можно считать сравнительно тонким. Объяснение концентрации межзвездной среды в тонкий диск достаточно простое и кроется в свойствах атомов газа (и облаков газа) терять энергию при столкновении друг с другом, которые непрерывно происходят в межзвездном пространстве. Благодаря этому газ скапливается там, где его полная (кинетическая + потенциальная) энергия минимальна — в плоскости звездного диска, притягивающего газ. Именно притяжение звезд не дает газу далеко отойти от плоскости диска.

Но и внутри диска Галактики газ распределен неравномерно. В центре Галактики выделяется молекулярный диск размером несколько сотен св. лет. Дальше от центра плотность газа падает, но быстро возрастает вновь, образуя гигантское газовое кольцо радиусом более 10 тыс. св. лет и шириной в несколько тысяч св. лет. Солнце находится за его пределами. В окрестностях Солнца средние плотности молекулярного и атомарного газа сопоставимы, а на еще больших расстояниях от центра преобладает атомарный газ. Внутри слоя межзвездной среды наибольшая плотность газа и пыли достигается в спиральных рукавах Галактики. Там особенно часто встречаются молекулярные облака и эмиссионные туманности, и рождаются звезды.

Рождение звезд. Когда астрономы научились измерять возраст звезд и выделять короткоживущие молодые звезды, было выявлено, что образование звезд происходит чаще всего там, где концентрируется межзвездная газопылевая среда — вблизи плоскости нашей Галактики, в ее спиральных ветвях. Ближайшие к нам области звездообразования связаны с комплексом молекулярных облаков в Тельце и Змееносце. Немногим дальше расположен огромный комплекс облаков в Орионе, где наблюдается большое количество недавно родившихся звезд, в том числе массивных и очень горячих, и несколько сравнительно крупных эмиссионных туманностей. Именно ультрафиолетовым излучением горячей звезды нагрета часть одного из облаков, которую мы видим как Большую туманность Ориона. Эмиссионные туманности той же природы, что и Туманность Ориона, всегда служат надежным индикатором тех областей Галактики, где рождаются звезды.

Звезды зарождаются в недрах холодных молекулярных облаков, где из-за сравнительно высокой плотности и очень низкой температуры газа силы тяготения играют очень важную роль и в состоянии вызвать сжатие отдельных уплотнений среды. Они сжимаются под действием сил собственного тяготения и постепенно разогреваются до образования горячих газовых шаров — молодых звезд. Наблюдать развитие этого процесса очень трудно, поскольку он может продолжаться миллионы лет и происходит в мало прозрачной (из-за пыли) среде.

Формирование звезд может происходить не только в крупных молекулярных облаках, но и в сравнительно небольших, но плотных. Их называют глобулами. Они видны на фоне неба как компактные и абсолютно непрозрачные объекты. Типичный размер глобул — от десятых долей до нескольких св. лет, масса — десятки и сотни масс Солнца.

В общих чертах процесс формирования звезд понятен. Пыль во внешних слоях облака задерживает свет звезд, расположенных снаружи, поэтому облако оказывается лишенным внешнего подогрева. В результате внутренняя часть облака сильно охлаждается, давление газа в нем падает, и газ уже не может сопротивляться взаимному притяжению своих частей — происходит сжатие. Быстрее всего сжимаются наиболее плотные части облака, там и образуются звезды. Они возникают всегда группами. Сначала это медленно вращающиеся и медленно сжимающиеся сравнительно холодные газовые шары различной массы, но когда температура в их недрах достигает миллионов градусов, в центре звезд начинаются термоядерные реакции, при которых выделяется большое количество энергии. Упругость горячего газа останавливает сжатие, возникает стационарная звезда, излучающая как большое нагретое тело.

Очень молодые звезды часто окружены пылевой оболочкой - остатками вещества, не успевшими еще упасть на звезду. Эта оболочка не выпускает изнутри звездный свет и полностью преобразует его в инфракрасное излучение. Поэтому самые молодые звезды обычно проявляют себя лишь как инфракрасные источники в недрах газовых облаков. И лишь позднее пространство вокруг молодой звезды расчищается и ее лучи прорываются в межзвездное пространство. Часть вещества, окружавшего формирующуюся звезду, может образовать вокруг нее вращающийся газопылевой диск, в котором со временем возникнут планеты.

Звезды типа Солнца после своего возникновения мало влияют на окружающую межзвездную среду. Но часть рождающихся звезд имеет очень большую массу — в десять и более раз больше, чем у Солнца. Мощное ультрафиолетовое излучение таких звезд и интенсивный звездный ветер сообщают тепловую и кинетическую энергию большим массам окружающего газа. Часть звезд взрывается как сверхновые, выбрасывая с большими скоростями гигантскую массу вещества в межзвездную среду. Поэтому звезды не только образуются из газа, но и во многом определяют его физические свойства. Звезды и газ можно рассматривать как единую систему со сложными внутренними связями. Однако в деталях процесс формирования звезд очень сложен и не до конца еще изучен. Известны физические процессы, которые стимулируют сжатие газа и рождение звезд, как и процессы, которые тормозят его. По этой причине связь между плотностью межзвездной среды в данной области Галактики и интенсивностью звездообразования в ней не однозначна


Скачиваний: 1
Просмотров: 0
Скачать реферат Заказать реферат