Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке

В настоящей статье в предложена формула в виде ряда для вычисления интеграла от гармонической функции по круговой луночке. Эта формула является обобщением теоремы о среднем.

ВНИМАНИЕ! Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками (вместо pic), графиками, приложениями, списком литературы и т.д., необходимо скачать работу.

Кубатурные формулы для вычисления интеграла
гармонической функции по круговой луночке

С.С. Трахименок, Новосибирский государственный
университет, кафедра дифференциальных уравнений


Вычисление
интегралов - задача, которая до сих пор интересует как физиков, так и
математиков.


В
настоящей статье в § 4 предложена формула в виде ряда для вычисления интеграла
от гармонической функции по круговой луночке. Эта формула является обобщением
теоремы о среднем.


Для
того чтобы построить подобное представление в виде ряда, понадобилось ввести (§
1) некую специальную последовательность гармонических полиномов, которая
является базисом пространства типа Бергмана [1]. Введенная последовательность
изначально не является ортогональной, поэтому в § 2 предлагаются формулы для
вычисления скалярных произведений от базисных функций для того, чтобы применить
метод Грама-Шмидта.

1. 
Области,  функциональное
пространство, полиномиальные последовательности

Ограниченную
область S в R2 назовем круговой луночкой, если ее граница Г состоит из двух дуг
окружностей Г1 и Г2, пересекающихся в угловых точках С1 и С2. Угол между Г1 и
Г2 обозначим через . Введем в R2 декартову систему координат (x,y),
поместив ее начало в середину отрезка С1С2, абсолютная величина которого равна
2, и направив ось абсцисс перпендикулярно к нему. С помощью биполярных
координат [2]





Кубатурные формулы для вычисления интеграла гармонической функции по круговой луночке


(1.1)


Скачиваний: 1
Просмотров: 0
Скачать реферат Заказать реферат